Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 89, Issue 3, pp 289–296 | Cite as

Globally coupled dynamics of breathing current filaments in semiconductors

  • R. E. Kunz
  • E. Schöll
Original Contributions

Abstract

Starting from a system of nonlinear transport equations describing the dynamics of a single breathing current filament, e.g. in the regime of low-temperature impurity breakdown in semiconductors, we introduce a simple nonlocal coupling mechanism for the description of two breathing filaments. It is based on the interaction of the two filaments via the external load circuit. We find that the model describes a selection mechanism allowing the survival of the originally larger filament only. Therefore, it can be considered a generalization of Ostwald ripening in thermodynamic equilibrium. Although the breathing instability is suppressed asymptotically, transient symmetric breathing of the filaments is possible due to a periodic repeller.

Keywords

Neural Network Nonlinear Dynamics Transport Equation External Load Thermodynamic Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. New York: Wiley 1977Google Scholar
  2. 2.
    Haken, H.: Synergetics. An introduction. Springer Series in Synergetics. Vol. 1. Haken, H. (ed.), 3rd edn. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  3. 3.
    Ebeling, W., Feistel, R.: Physik der Selbstorganisation und Evolution. Berlin: Akademie-Verlag 1982Google Scholar
  4. 4.
    Thomas, H., (ed.): Nonlinear dynamics in solid state physics. Berlin, Heidelberg, New York: Springer 1992Google Scholar
  5. 5.
    Schöll, E.: In: Handbook on semiconductors. Vol. 1, Landsberg, PT. (ed.), 2nd edn. Amsterdam: Elsevier 1992Google Scholar
  6. 6.
    Shaw, M.P., Mitin, V.V., Schöll, E., Grubin, H.L.: The physics of instabilities in solid state electron devices. New York: Plenum Press 1992Google Scholar
  7. 7.
    Schöll, E.: Nonequlibrium phase transitions in semiconductors. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  8. 8.
    Abe, Y. (ed.): Nonlinear and chaotic transport in semiconductors. Appl. Phys. A (Special Issue)48, 93–191 (1989)Google Scholar
  9. 9.
    Kerner, B.S., Osipov, V.V.: Sov. Phys. Usp.32, 101 (1989)Google Scholar
  10. 10.
    Aoki, K., Yamamoto, K.: Phys. Lett. A98, 72 (1983)Google Scholar
  11. 11.
    Mayer, K.M., Parisi, J., Huebener, R.P.: Z. Phys. B—Condensed Matter71, 171 (1988)Google Scholar
  12. 12.
    Brandl, A., Völcker, M., Prettl, W.: Appl. Phys. Lett.55, 328 (1989)Google Scholar
  13. 13.
    Mayer, K.M., Gross, R., Parisi, J., Peinke, J., Huebener, R.P.: Solid State Commun.63, 55 (1987)Google Scholar
  14. 14.
    Symanzyk, R., Gaelings, S., Jäger, D.: Phys. Lett. A160, 397 (1991)Google Scholar
  15. 15.
    Purwins, H.G., Klempt, G., Berkemeier, J.: Festkörperprobleme27, 27 (1987)Google Scholar
  16. 16.
    Mayer, K.M., Parisi, J., Peinke, J., Huebener, R.P.: Physica D32, 306 (1988)Google Scholar
  17. 17.
    Rau, U., Mayer, K.M., Parisi, J., Peinke, J., Clauss, W., Huebener, R.P.: Solid State Electron.32, 1365 (1989)Google Scholar
  18. 18.
    Mayer, K.M.: Ph.D. Thesis, Tübingen 1989Google Scholar
  19. 19.
    Rau, U., Clauss, W., Kittel, A., Lehr, M., Bayerbach, M., Parisi, J., Peinke, J., Huebener, R.P.: Phys. Rev. B43, 2255 (1991)Google Scholar
  20. 20.
    Brandl, A., Völcker, M., Prettl, W.: Solid State Commun.72, 847 (1989)Google Scholar
  21. 21.
    Brandl, A., Kröninger, W., Prettl, W., Obermair, G.: Phys. Rev. Lett.64, 212 (1990)Google Scholar
  22. 22.
    Schöll, E.: Z. Phys. B—Condensed Matter46, 23 (1982); Schöll, E.: Solid State Electron.29, 687 (1986)Google Scholar
  23. 23.
    Schöll, E., Drasdo, D.: Z. Phys. B—Condensed Matter81, 183 (1990)Google Scholar
  24. 24.
    Ohta, T.: Prog. Theor. Phys. [Suppl.]99, 425 (1989)Google Scholar
  25. 25.
    Elmer, F.J.: Phys. Rev. A41, 4174 (1990)Google Scholar
  26. 26.
    Schimansky-Geier, L., Zülicke, Ch., Schöll, E.: Z. Phys. B—Condensed Matter84, 433 (1991)Google Scholar
  27. 27.
    Schöll, E.: Solid State Electron.32, 1129 (1989)Google Scholar
  28. 28.
    Schlögl, F.: Z. Phys.253, 147 (1972)Google Scholar
  29. 29.
    Ebeling, W., Ivanov, C., Schimansky-Geier, L.: Rostocker Phys. Manuskr.2, 93 (1977)Google Scholar
  30. 30.
    Schöll, E., Landsberg, P.T.: Z. Phys. B—Condensed Matter72, 515 (1988)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • R. E. Kunz
    • 1
  • E. Schöll
    • 1
  1. 1.Institut für Theoretische PhysikTechnische UniversitätBerlinGermany

Personalised recommendations