Archives of Virology

, Volume 51, Issue 4, pp 263–273 | Cite as

Survival of airborne influenza virus: Effects of propagating host, relative humidity, and composition of spray fluids

  • F. L. Schaffer
  • M. E. Soergel
  • D. C. Straube
Article

Summary

Influenza A virus, strain WSNH, propagated in bovine, human and chick embryo cell cultures and aerosolized from the cell culture medium, was maximally stable at low relative humidity (RH), minimally stable at mid-range RH, and moderately stable at high RH. Most lots of WSNH virus propagated in embryonated eggs and aerosolized from the allantoic fluid were also least stable at mid-range RH, but two preparations after multiple serial passage in eggs showed equal stability at mid-range and higher RH's. Airborne stability varied from preparation to preparation of virus propagated both in cell culture and embryonated eggs. There was no apparent correlation between airborne stability and protein content of spray fluid above 0.1 mg/ml, but one preparation of lesser protein concentration was extremely unstable at 50 to 80 per cent RH. Polyhydroxy compounds exerted a protective effect on airborne stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, T. G.: Survival of airborne virus, phage and other minute microbes. In:Dimmick, R. L., Akers, A. B. (eds.), An Introduction to Experimental Aerobiology, 296–339. New York: Wiley—Interscience 1969.Google Scholar
  2. 2.
    Akers, T. G.: Some aspects of the airborne inactivation of viruses. In:Hers, J. F. P., Winkler, K. C. (eds.), Airborne Transmission and Airborne Infection, 73–81. Utrecht: Oosthoek Publ. Co. 1973.Google Scholar
  3. 3.
    Benbough, J. E.: The effect of relative humidity on the survival of airborne Semliki Forest virus. J. gen. Virol.4, 473–477 (1969).Google Scholar
  4. 4.
    Benbough, J. E.: Some factors affecting the survival of airborne viruses. J. gen. Virol.10, 209–220 (1971).Google Scholar
  5. 5.
    Borecky, L., Lackovic, V., Rathova, V.: Surface properties of the egg and mouse lines of A 1 influenza virus. J. Immunol.95, 387–395 (1965).Google Scholar
  6. 6.
    Chatigny, M. A., Wolochow, H., Leif, W. R., Hebert, J.: The toxicity of nitrogen oxides for an airborne microbe: Effects of relative humidity test procedures and containment and composition of spray suspension. In:Hers, J. F. P., Winkler, K. C. (eds.), Airborne Transmission and Airborne Infection, 94–97. Utrecht: Oosthoek Publ. Co. 1973.Google Scholar
  7. 7.
    Choppin, P. W.: Replication of influenza virus in a continuous cell line: High yield of infective virus from cells inoculated at high multiplicity. Virology39, 130–134 (1969).Google Scholar
  8. 8.
    Compans, R. W., Choppin, P. W.: The structure and assembly of influenza and parainfluenza viruses. In:Maramorosch, K., Kurstak, E. (eds.), Comparative Virology, 407–432. New York: Academic Press, Inc. 1971.Google Scholar
  9. 9.
    de Jong, J. C., Trouwborst, T., Winkler, K. C.: The mechanism of virus decay in aerosols. In:Hers, J. F. P., Winkler, K. C. (eds.), Airborne Transmission and Airborne Infection, 124–130. Utrecht: Oosthoek Publ. Co. 1973.Google Scholar
  10. 10.
    Dimmick, R. L.: Production of biological aerosols. In:Dimmick, R. L., Akers, A. B. (eds.), An Introduction to Experimental Aerobiology, 22–45. New York: Wiley—Interscience 1969.Google Scholar
  11. 11.
    Harper, G. J.: Airborne microorganisms: Survival tests with four viruses. J. Hyg. (Camb.)59, 479–486 (1961).Google Scholar
  12. 12.
    Harper, G. J.: The influence of environment on the survival of airborne virus particles in the laboratory. Arch. ges. Virusforsch.13, 64–71 (1963).Google Scholar
  13. 13.
    Hearn, H. J., Jr., Soper, W. T., Miller, W. S.: Loss of virulence of yellow fever virus serially passed in HeLa cells. Proc. Soc. exp. Biol. Med.119, 319–322 (1965).Google Scholar
  14. 14.
    Hemmes, J. H., Winkler, K. C., Kool, S. M.: Virus survival as a seasonal factor in influenza and poliomyelitis. Nature188, 430–431 (1960).Google Scholar
  15. 15.
    Hood, A. M.: Infectivity of influenza virus aerosols. J. Hyg. (Camb.)61, 331–335 (1963).Google Scholar
  16. 16.
    Kilbourne, E. D.: Plaque formation by influenza viruses, In:Habel, K., Salzman, M. P. (eds.), Fundamental Techniques in Virology, 146–160. New York: Academic Press, Inc. 1969.Google Scholar
  17. 17.
    Lazarowitz, S. G., Goldberg, A. R., Choppin, P. W.: Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology56, 172–180 (1973).Google Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951).Google Scholar
  19. 19.
    Rechsteiner, J., Winkler, K. C.: Inactivation of respiratory syncytial virus in aerosol. J. gen. Virol.5, 405–410 (1969).Google Scholar
  20. 20.
    Shechmeister, I. L.: Studies on the experimental epidemiology of respiratory infections. III. Certain aspects of the behavior of type A influenza virus as an airborne cloud. J. inf. Dis.87, 128–132 (1950).Google Scholar
  21. 21.
    Spendlove, R., Taylor, F. L.: A rack for expediting the manipulation of tissue culture bottles with an application to the viral plaque technique. Amer. J. clin. Pathol.40, 34–37 (1963).Google Scholar
  22. 22.
    Webb, S. J., Bather, R., Hodges, R. W.: The effect of relative humidity and inositol on airborne viruses. Canad. J. Microbiol.9, 87–92 (1963).Google Scholar
  23. 23.
    Zitcer, E. M., Bruening, G., Agrawal, H. O.: The multiplication of an influenza virus strain in a continuous line of mammalian cells. Arch. ges. Virusforsch.20, 137–141 (1967).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • F. L. Schaffer
    • 1
  • M. E. Soergel
    • 1
  • D. C. Straube
    • 1
  1. 1.Naval Biosciences Laboratory, School of Public HealthUniversity of CaliforniaBerkeleyUSA

Personalised recommendations