Archives of Virology

, Volume 52, Issue 1–2, pp 19–27 | Cite as

Phospholipid and cholesterol composition of rubella virus and its host cell BHK 21 grown in suspension cultures

  • G. Bardeletti
  • Danièle C. Gautheron


Analysis of total lipid, phospholipid and cholesterol distribution has been conducted in parallel on BHK 21/13S cells grown in suspension cultures, on purified Rubella virus and on cells infected by the virus. Extracellular virus was purified by use of a previously described procedure (3, 4).

A higher content of lipid and phospholipid was found in infected cells (versus control cells) which were characterized by the presence of an unidentified nonphosphorylated lipid fraction that was detected neither in the control cells nor in the purified virus.

The level and the nature of phospholipids and cholesterol of BHK 21/13S cells (infected or not) were compared to those of various clones of BHK 21 cells.

The same phospholipids were detected in the virus and in the cells but phosphatidyl choline level was much higher than in the control cells and lower than in the infected cells, while phosphatidyl ethanolamine content was lower than in the cells (infected or not).

The presence of cardiolipin (4.4 per cent), the amount of sphingomyelin (6.9 per cent) and the molar ratio of cholesterol to phospholipids (0.26) in virions seem to favor a rubella virus maturation site in the cells.


Cholesterol Choline Infected Cell Suspension Culture Phosphatidyl Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardeletti, G., Henry, M., Gautheron, D.: Effets primaires du virus de la Rubéole sur le contrôle énergétique de cellules BHK 21. Comp. Rend. Soc. Biol.5, 1079–1082 (1971).Google Scholar
  2. 2.
    Bardeletti, G., Henry, M., Sohier, R., Gautheron, D.: Primary effects of the Rubella virus on the metabolism of BHK 21 cells grown in suspension cultures. Arch. ges. Virusforsch.39, 26–34 (1972).Google Scholar
  3. 3.
    Bardeletti, G.: Purification and study of Rubella virus. 10th Meeting Federation of European Biochemical Societies. Abstract 343—Société de Chimie Biologique—Paris 1975.Google Scholar
  4. 4.
    Bardeletti, G., Kessler, N., Aymard-Henry, N.: Morphology, Biochemical analysis and neuraminidase activity of Rubella virus. Arch. Virol.49, 175–186 (1975).Google Scholar
  5. 5.
    Bartlett, G. R.: Phosphorus assay in column chromatography J. biol. Chem.234, 466–468 (1959).Google Scholar
  6. 6.
    Comte, J., Gautheron, D., Peypoux, F., Michel, G.: Lipid composition and endogenous respiration of pig heart mitochondria. Lipids6, 882–888 (1971).Google Scholar
  7. 7.
    Comte, J., Maïsterrena, B., Gautheron, D.: Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Biochim. biophys. Acta419, 271–284 (1976).Google Scholar
  8. 8.
    David, A. E.: Lipid composition of Sindbis virus. Virology46, 711–720 (1971).Google Scholar
  9. 9.
    Ershov, F. I., Gaitskhoki, V. S., Kiselev, O. I., Zaitseva, O. V., Menshikh, L. K., Uryvaev, L. V., Neifakh, S. A., Zhdanov, V. M.: Replication of infectious viral RNA in isolated mitochondria. Communication II Replication of viral RNA in mitochondria and characteristics of the final product. Vop. Virusol.3, 274–280 (1971).Google Scholar
  10. 10.
    Ferrand, P., Rieffel, C.: Etude de la méthode de Zak pour le dosage du cholestérol sérique par la réaction de Zlatkis et Zak. Ann. Biol. Clin.16, 299–307 (1958).Google Scholar
  11. 11.
    Folch, J., Lees, H., Sloane-Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.226, 497–509 (1957).Google Scholar
  12. 12.
    Gaitskhoki, V. S., Ershov, F. I., Kiselev, O. I., Menshikh, L. K., Zaitseva, O. V., Uryvaev, L. V., Zhdanov, V. M., Neifakh, S. A.: Replication of infectious viral RNA in isolated mitochondria. Communication I. Penetration of viral RNA into mitochondria and its effect on mitochondrial syntheses. Vop. Virusol.3, 269–273 (1971).Google Scholar
  13. 13.
    Gaitskhoki, V. S., Ershov, F. I., Kiselev, O. I., Menshikh, L. K., Zaitseva, O. V., Uryvaev, L. V., Zhdanov, V. M., Neifakh, S. A.: Reconstruction of autonomic genetic protein-synthesizing system from DNA and isolated mitochondria. Dokl. Akadem. Nauk. S.S.S.R.201, 220–223 (1971).Google Scholar
  14. 14.
    Gaitskhoki, V. S., Ershov, F. I., Kiselev, O. I., Zaitseva, O. V., Zhdanov, V. M., Neifakh, S. A.: On the synthesis of viral ribonucleic acids and ribonucleoproteins in the submitochondrial system completely free of interfering cytoplasmic contaminations. Mol. Cell. Biochem.10, 17–26 (1976).Google Scholar
  15. 15.
    Gornall, A. G., Bardawill, C. J., David, M. M.: Determination of serum proteins by means of the biuret reaction. J. biol. Chem.177, 751–766 (1949).Google Scholar
  16. 16.
    Hartree, E. F.: Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem.48, 422–427 (1972).Google Scholar
  17. 17.
    Hayflick, L.: Tissue cultures and mycoplasmas. Tex. Rep. Biol. Med.23, 285 to 303 (1965).Google Scholar
  18. 18.
    Horzinek, M. C.: The structure of Togaviruses. Progr. med. Virol.16, 109–156 (1973).Google Scholar
  19. 19.
    Horzinek, M. C.: Comparative aspects of Togaviruses. J. gen. Virol.20 suppl., 87–103 (1973).Google Scholar
  20. 20.
    Klenk, H. D.: Virus membranes. In:Chapman, D., Wallach, D. F. H. (eds.): Biological membranes, Vol. 2, 145–183. London-New York: Academic Press 1973.Google Scholar
  21. 21.
    Klenk, H. D., Choppin, P. W.: Lipids of plasma membranes of monkey and hamster kidney cells and of parainfluenza virions grown in these cells. Virology38, 255–268 (1969).Google Scholar
  22. 22.
    Lenard, J., Compans, R. W.: The membrane structure of lipid-containing viruses. Biochim. biophys. Acta344, 51–94 (1974).Google Scholar
  23. 23.
    Maïsterrena, B., Comte, J., Gautheron, D. C.: Purification of pig heart mitochondrial membranes. Enzymatic and morphological characterization as compared to microsomes. Biochim. biophys. Acta367, 115–126 (1974).Google Scholar
  24. 24.
    McMurray, W. C.: Phospholipids in subcellular organelles and membranes. In:Ansel, G. B., Hawthorne, J. N., Dowson, R. M. C. (eds.), Form and function of phospholipids, 205–251. (BBA Library, Vol. 3.) Amsterdam-London-New York: Elsevier 1973.Google Scholar
  25. 25.
    Melnick, R. L., Tinberg, H. M., Maguire, J., Packer, L.: Studies on mitochondrial proteins. I. Separation and characterization by polyacrylamide gel electrophoresis. Biochim. biophys. Acta311, 230–241 (1973).Google Scholar
  26. 26.
    Myers, M. W., Bosmann, H. B.: Mitochondrial autonomy: depressed protein and glycoprotein synthesis in mitochondria of SV-3T 3 cells. FEBS Lett.26, 294–296 (1972).Google Scholar
  27. 27.
    Pfefferkorn, E. R., Shapiro, D.: Reproduction of Togavirus. In:Fraenkel Conrat, H., Wagner, R. R. (eds.), Comprehensive Virology, Vol. 2, 171–230. New York-London: Plenum Press 1974.Google Scholar
  28. 28.
    Renkonen, O., Kääriäinen, L., Simons, K., Gahmberg, C. G.: The lipid class composition of Semliki forest virus and of plasma membranes of the host cells. Virology46, 318–326 (1971).Google Scholar
  29. 29.
    Renkonen, O., Gahmberg, C. G., Simons, K., Kääriäinen, L.: The lipids of the plasma membranes and endoplasmic reticulum from cultures baby hamster kidney cells (BHK 21). Biochim. biophys. Acta255, 66–78 (1972).Google Scholar
  30. 30.
    Renkonen, O., Kääriäinen, L., Petterson, R., Oker-Blom, N.: The phospholipid composition of Uukumiemi virus, a non cubical tick borne arbovirus. Virology50, 899–901 (1972).Google Scholar
  31. 31.
    Rouser, G., Nelson, G. J., Fleisher, S., Simon, G.: Lipid composition of animal cell membranes organelles and organs. In:Chapman, D. (ed.), Biological membranes, Vol. 1, 5–69. London-New York: Academic Press 1968.Google Scholar
  32. 32.
    Stoker, M., Macpherson, I.: Syrian hamster fibroblast cell line BHK21 and its derivatives. Nature (London)203, 1355–1357 (1964).Google Scholar
  33. 33.
    Von Bonsdorff, C. H., Vaheri, A.: Growth of Rubella virus in BHK 21 cells. Electron microscopy of morphogenesis. J. gen. Virol.5, 47–51 (1969).Google Scholar
  34. 34.
    Ziminsky, T., Borowsky, E.: A new spray reagent replacing sulphuric acid in thin layer chromatography. J. Chromatog.23, 480–482 (1966).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • G. Bardeletti
    • 1
    • 2
  • Danièle C. Gautheron
    • 1
    • 2
  1. 1.Laboratoire de Biochimie-dynamiqueUniversité Claude Bernard de LyonVilleurbanneFrance
  2. 2.Laboratoire de Bactériologie et VirologieUniversité Claude Bernard de LyonLyonFrance

Personalised recommendations