Archives of Virology

, Volume 49, Issue 2–3, pp 175–186 | Cite as

Morphology, biochemical analysis and neuraminidase activity of rubella virus

  • G. Bardeletti
  • Nicole Kessler
  • Michèle Aymard-Henry
Article

Summary

A simple and reproducible method for the production of purified rubella virus is described. Purified virus was subjected to morphological and chemical analysis. The virus particles were rather pleomorphic (60 nm diameter), sometimes with one or more peripheral protrusions. The viral surface, revealed by negative staining, was composed of spikes 6 nm long, featuring enlarged ends.

In SDS-urea-polyacrylamide gel electrophoresis, 4 major and 4 minor polypeptide bands were revealed. Total lipids and phospholipids were analysed on the same preparation. The viral particles were composed of RNA: 0.030 mg, and lipids: 0.245 mg, of which 0.169 mg were phospholipids for each mg of viral protein. Biologically, the purified virus preparation showed high infectivity, a high hemagglutination titre and a weak neuraminidase activity under defined conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allison, J. H., Agrawal, H. C., Moore, B. W.: Effect of N, N, N′, N′ tetramethyl-ethylenediamine on the migration of proteins in SDS polyacrylamide gels. Anal. Biochem.58, 592–601 (1974).Google Scholar
  2. 2.
    Aymard-Henry, M., Coleman, M. T., Dowdle, W. R., Laver, W. G., Schild, G. C., Webster, R. G.: Influenza virus neuraminidase and neuraminidase inhibition test procedures. Bull. W.H.O.48, 199–202 (1973).Google Scholar
  3. 3.
    Bardeletti, G., Henry, M., Sohier, R., Gautheron, D.: Primary effects of the rubella virus on the metabolism of BHK21 cells grown in suspension cultures. Arch. ges. Virusforsch.39, 26–34 (1972).Google Scholar
  4. 4.
    Bardeletti, G., Gautheron, D. C.: Compared phospholipid composition of rubella virus and its host cell BHK21 grown in suspension cultures, infected or not. Submitted to Biochem. biophys. Acta (1975).Google Scholar
  5. 5.
    Bartlett, G. R.: Phosphorus assay in column chromatography. J. biol. Chem.234, 466–468 (1959).Google Scholar
  6. 6.
    Cheftel, C., Bouchilloux, S.: Glycoprotein biosynthesis in sheep slices incubated with radioactive glucosamine and leucine I polysomes microsomes and post-microscomal fraction. Biochem. biophys. Acta170, 15–28 (1968).Google Scholar
  7. 7.
    Folch, J., Lees, H., Sloane-Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.226, 497–509 (1957).Google Scholar
  8. 8.
    Gornall, A. G., Bardawill, C. J., David, M. M.: Determination of serum proteins by means of the biuret reaction. J. biol. Chem.177, 751–766 (1949).Google Scholar
  9. 9.
    Hartree, E. F.: Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem.48, 422–427 (1972).Google Scholar
  10. 10.
    Hayflick, L.: Tissue cultures and mycoplasmas. Tex. Rep. biol. Med.23, 285–303 (1965).Google Scholar
  11. 11.
    Holmes, I. H., Wark, M. C., Warburton, M. F.: Is rubella an arbovirus? II. Ultrastructural morphology and development. Virology37, 15–25 (1969).Google Scholar
  12. 12.
    Horzinek, M. C.: The structure of Togaviruses. Progr. med. Virol.16, 109–156 (1973).Google Scholar
  13. 13.
    Klenk, H. D.: Virus membranes. In:Chapman, D., andWallach, D. F. H. (eds.): Biological membranes, Vol.2, 145–183. London New-York: Academic Press 1973.Google Scholar
  14. 14.
    Korolev, M. B., Kowi, G., Aguilera, A., Rodrigues, P.: The structure of RK 13 cells infected with rubella virus. Vopr. Virusol.2, 194–199 (1973).Google Scholar
  15. 15.
    Liebhaber, H., Gross, P. A.: The structural proteins of rubella virus. Virology47, 684–693 (1972).Google Scholar
  16. 16.
    Loening, U. E.: The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide gel electrophoresis. Biochem. J.102, 251–257 (1967).Google Scholar
  17. 17.
    Madeley, C. R.: Virus morphology, 136–137. Edinburgh-London: Churchill-Livingstone 1972.Google Scholar
  18. 18.
    Maizel, J. V., Jr.: In:Maramorosch, K., Koprowski, H. (eds.): Methods in Virology, Chap. V, 179–246. New York: Academic Press 1971.Google Scholar
  19. 19.
    Reed, L. J., Muench, H.: A simple method of estimating fifty percent end points. Amer. J. Hyg.27, 493–497 (1938).Google Scholar
  20. 20.
    Shatkin, A. J.: Colorimetric reactions for DNA, RNA and protein determination. In:Habel, K., Salzman, N. P. (eds.): Fundamental Techniques in Virology, 231–237. New York: Academic Press 1969.Google Scholar
  21. 21.
    Stewart, G. L., Parkman, P. D., Hopps, H. E., Douglas, R. D., Hamilton, J. P., Meyer, H. M.: Rubella virus hemagglutination inhibition test. New Engl. J. Med.276, 554–557 (1967).Google Scholar
  22. 22.
    Stoker, M., Macpherson, I.: Syrian hamster fibroblast cell line BHK21 and its derivatives. Nature (London)203, 1355–1357 (1964).Google Scholar
  23. 23.
    Swaney, J. B., Van de Woude, G. F., Bachrach, H. L.: Sodium dodecyl sulfate dependent anomalies in gel electrophoresis: alterations in the banding patterns of foot-and-mouth disease virus polypeptides. Anal. Biochem.58, 337–346 (1974).Google Scholar
  24. 24.
    Tayot, J. L., Montagnon, B.: Applications de la centrifugation zonale en immunologie virale—aspects théoriques et pratiques. Spectra 20004, 195–204 (1973).Google Scholar
  25. 25.
    Väänänen, P., Vaheri, A.: Large scale purification of rubella virus and preparation of an experimental split of rubella vaccine. Appl. Microbiol.22, 255–259 (1971).Google Scholar
  26. 26.
    Vaheri, A., Vonbonsdorff, C. H., Vesikari, T., Hovi, T., Väänänen, P.: Purification of rubella virus particles. J. gen. Virol.5, 39–46 (1969).Google Scholar
  27. 27.
    Vaheri, A., Hovi, T.: Structural proteins and subunits of rubella virus. J. Virol.9, 10–16 (1972).Google Scholar
  28. 28.
    Wallis, C., Melnick, J. L., Rapp, F.: Different effects of MgCl2 and MgSO4 on the thermostability of viruses. Virology26, 694–699 (1965).Google Scholar
  29. 29.
    Warren, L.: The thiobarbituric assays of sialic acids. J. biol. Chem.234, 1971 to 1975 (1959).Google Scholar
  30. 30.
    Weber, K., Osborne, M.: The reliability of molecular weight determination by dodecyl sulfate polyacrylamide gel electrophoresis. J. biol. Chem.244, 4406–4412 (1969).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. Bardeletti
    • 1
    • 2
    • 3
  • Nicole Kessler
    • 1
    • 2
    • 3
  • Michèle Aymard-Henry
    • 1
    • 2
    • 3
  1. 1.Laboratoire de Biochimie Dynamique and ERA no 266 du CNRSVilleurbanne
  2. 2.Laboratoire de Bactériologie-VirologieLyonFrance
  3. 3.Université Claude BernardLyonFrance

Personalised recommendations