Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 78, Issue 1, pp 33–43 | Cite as

Anomalous dimensions of high-gradient operators in then-vector model in 2+ε dimensions

  • Franz Wegner
Article

Abstract

The anomalous dimensions of operators with an arbitrary number of gradients are determined for then-vector model ind=2+ε dimensions in one-loop order. For those operators which do not vanish ind=2 dimensions all anomalous dimensions can be given explicitly. Among the scalar operators (underO(n) andO(d)) with 2s derivatives there is an operator with the full dimensiony=2(1−s)+ɛ(1+s(s−1)/(n−2))+O(ɛ2). Thus similarly as for theQ-matrix model investigated by Kravtsov, Lerner, and Yudson, large positive corrections in one-loop order are obtained for then-vector model. Possible consequences of the corrections are discussed.

Keywords

Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kravtsov, V.E., Lerner, I.V., Yudson, V.I.: Zh. Eksp. Teor. Fiz.94, 255 (1988); Sov. Phys. JETP67, 1441 (1988)Google Scholar
  2. 2.
    Kravtsov, V.E., Lerner, I.V., Yudson, V.I.: Phys. Lett. A134, 245 (1989)Google Scholar
  3. 3.
    Wegner, F.: Phys. Rep.67, 15 (1980)Google Scholar
  4. 4.
    Efetov, K.B.: Adv. Phys.32, 53 (1983)Google Scholar
  5. 5.
    Polyakov, A.M.: Phys. Lett.59B, 79 (1975)Google Scholar
  6. 6.
    Brézin, E., Zinn-Justin, J.: Phys. Rev. Lett.36, 691 (1976)Google Scholar
  7. 7.
    Brézin, E., Zinn-Justin, J.: Phys. Rev. B14, 3110 (1976)Google Scholar
  8. 8.
    Wegner, F.J.: Phys. Rev. B5, 4529 (1972)Google Scholar
  9. 9.
    Brézin, E., Zinn-Justin, J., Le Guillou, J.C.: Phys. Rev. D14, 2615 (1976)Google Scholar
  10. 10.
    Brézin, E., Zinn-Justin, J., Le Guillou, J.C.: Phys. Rev. B14, 4976 (1976)Google Scholar
  11. 11.
    Wegner, F.J.: J. Phys. C7, 2098 (1974)Google Scholar
  12. 12.
    Wegner, F.J.: In: Phase transition and critical phenomena. Domb, C., Green, M.S. (eds.), p. 7. London: Academic Press 1976Google Scholar
  13. 13.
    Wilson, K.G., Kogut, J.: Phys. Rep. C12, 75 (1974)Google Scholar
  14. 14.
    Hamermesh, M.: Group theory. London: Plenum Press 1962Google Scholar
  15. 15.
    Wegner, F.: Nucl. Phys. B280 [FS18], 193, 210 (1987)Google Scholar
  16. 16.
    Bernreuther, W., Wegner, F.J.: Phys. Rev. Lett.57, 1383 (1986)Google Scholar
  17. 17.
    Wegner, F.: Nucl. Phys. B316, 663 (1989)Google Scholar
  18. 18.
    Mitter, P.K., Ramadas, H.R.: Commun. Math. Phys.122, 575 (1989)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Franz Wegner
    • 1
  1. 1.Institut für Theoretische PhysikRuprecht-Karls-UniversitätHeidelbergGermany

Personalised recommendations