Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 28, Issue 4, pp 287–290 | Cite as

Application of the Monte Carlo method for evaluating the Niemeijer-van Leeuwen cumulant expansion

  • Z. Rácz
  • P. Ruján
Article

Abstract

We show that the large cell size problem of the real space renormalization can be handled effectively by Monte Carlo methods. As a demonstration, the second-order cumulant expansion is calculated for the three-dimensional simple cubic Ising model, using a 3 × 3 × 3 cell.

Keywords

Spectroscopy Neural Network State Physics Complex System Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, K.G., Kogut, J.: Phys. Rep.12 C, 76 (1974)Google Scholar
  2. 2.
    Niemeijer, Th., van Leeuwen, J.M.J.: Phys. Rev. Lett.31, 1411 1973; Physica (Utr.)71, 17 (1974)Google Scholar
  3. 3.
    Kadanoff, L.P.: Phys. Rev. Lett.34, 1005 (1975)Google Scholar
  4. 4.
    Migdal, A.A.: Zh. ETF69, 1457 (1975)Google Scholar
  5. 5.
    Ma, S.: Phys. Rev. Lett.37, 461 (1976)Google Scholar
  6. 6.
    Hsu, S., Niemeijer, Th., Gunton, J.D.: Phys. Rev. B11, 2699 (1975)Google Scholar
  7. 7.
    Sudbø, A.S., Hemmer, P.C.: Phys. Rev. B13, 980 (1976)Google Scholar
  8. 8.
    Harris, A.B., Lubensky, T.C.: Phys. Rev. Lett.33, 1540 (1974)Google Scholar
  9. 9.
    Tatsumi, T., Kawasaki, K.: Prog. Theor. Phys.55, 612 (1976)Google Scholar
  10. 10.
    Hilhorse, H.J.: Phys. Lett. A56, 153 (1976)Google Scholar
  11. 11.
    Lublin, D.M.: Phys. Rev. Lett.34, 568 (1975)Google Scholar
  12. 12.
    Rogiers, J., Dekeyser, R.: Phys. Rev. B13, 4886 (1976)Google Scholar
  13. 13.
    Fields, J.N., Fogel, M.B.: Physica A80, 411 (1975)Google Scholar
  14. 14.
    Hsu, S., Gunton, J.D.: Phys. Rev. B15, 2688 (1977)Google Scholar
  15. 15.
    Hemmer, P.C., Velarde, M.G.: J. Phys. A9, 1713 (1976)Google Scholar
  16. 16.
    Jan, N., Glazer, A.M.: Phys. Lett. A59, 3 (1976)Google Scholar
  17. 17.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys.21, 1087 (1953)Google Scholar
  18. 18.
    Binder, K.: In: Phase Transitions and Critical Phenomena, Vol. 5 B. p. 2 (edited by C. Domb and M.S. Green) New York: Academic, 1976Google Scholar
  19. 19.
    Kadanoff, L.P.: Physics2, 263 (1966)Google Scholar
  20. 20.
    Hsu, S.: Ph. D. dissertation (Temple University, 1976) unpublishedGoogle Scholar
  21. 21.
    Glauber, R.: J. Math. Phys. N.Y.4, 234 (1963)Google Scholar
  22. 22.
    See e.g. Kadanoff, L.P., Houghton, A., Yalabik, M.C.: J. Stat. Phys.14, 171 (1976)Google Scholar
  23. 23.
    Müller-Krumbhaar, H., Binder, K.: J. Stat. Phys.8, 1 (1973)Google Scholar
  24. 24.
    Peretto, P.: Solid State Comm.19, 235 (1976)Google Scholar
  25. 25.
    Domb, C.: In: Phase Transitions and Critical Phenomena, Vol. 3, ed. by C. Domb and M.S. Green, London, Academic PressGoogle Scholar
  26. 26.
    Nienhuis, B., Nauenberg, M.: Phys. Rev. Lett.35, 477 (1975)Google Scholar
  27. 27.
    Friedman, Z., Felsteiner, J.: Phys. Rev. B15, 5317 (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Z. Rácz
    • 1
  • P. Ruján
    • 1
  1. 1.Institute for Theoretical PhysicsEötvös UniversityBudapestHungary

Personalised recommendations