Advertisement

Archives of Virology

, Volume 122, Issue 3–4, pp 223–235 | Cite as

Identification and sequence determination of the capsid protein gene of feline calicivirus

  • M. J. Carter
  • I. D. Milton
  • P. C. Turner
  • J. Meanger
  • M. Bennett
  • R. M. Gaskell
Original Papers

Summary

We have determined 4380 bases of the sequence from a cDNA clone containing the 3′ end of feline calicivirus strain F9. We find four candidate open reading frames of which three are complete and comprise 245, 317 and 2012 nucleotides. The fourth continues toward the 5′ end. We have expressed the largest complete open reading frame inE. coli. Sera raised to this antigen react specifically with the capsid protein and its intracellular precursor molecule. N-terminal sequence analysis of purified, mature capsid protein confirms this assignment and has identified the position at which precursor is cleaved.

Keywords

Nucleotide Infectious Disease Sequence Analysis Protein Gene cDNA Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachrach HL, Hess WR (1973) Animal picornaviruses with a single major species of capsid protein. Biochem Biophys Res Commun 55: 141–149Google Scholar
  2. 2.
    Burroughs JN, Doel TR, Smale CJ, Brown F (1978) A model for vesicular exanthema virus, the prototype of the calicivirus group. J Gen Virol 40: 161–174Google Scholar
  3. 3.
    Carter MJ (1989) Feline calicivirus protein synthesis investigated by Western blotting. Arch Virol 108: 69–79Google Scholar
  4. 4.
    Carter MJ (1990) Transcription of feline calicivirus RNA. Arch Virol 114: 143–152Google Scholar
  5. 5.
    Carter MJ, Madeley CR (1987) Caliciviruses. In: Nermut MV, Steven AG (eds) Animal virus structure. Elsevier, Amsterdam, pp 121–128Google Scholar
  6. 6.
    Carter MJ, Routledge EG, Toms GL (1989) Monoclonal antibodies to feline calicivirus. J Gen Virol 70: 2197–2200Google Scholar
  7. 7.
    Doorbar J, Cambell D, Grand RJA, Gallimore PH (1986) Identification of the human papillomavirus-1a E4 gene products. EMBO J 5: 355–362Google Scholar
  8. 8.
    Dretzen G, Bellard M, Sassone-Corsi P, Chambon P (1981) A reliable method for the recovery of DNA fragments from agarose and acylamide gels. Anal Biochem 112: 295–298Google Scholar
  9. 9.
    Hanahan D (1985) Techniques for transformation ofE. coli. In: Glover DM (ed) DNA cloning, vol 1. IRL Press, Eynsham, pp 109–135Google Scholar
  10. 10.
    Henikoff S (1984) Unidirectional deletion with exonuclease III creates target break-points for DNA sequencing. Gene 28, 351–359Google Scholar
  11. 11.
    Kalunda M, Lee KM, Holmes DF, Gillespie JH (1975) Serologic classification of feline caliciviruses by plaque reduction, neutralization and immunodiffusion. Am J Vet Sci 30: 197–206Google Scholar
  12. 12.
    Knowles JO, Dawson S, Gaskell RM, Gaskell CJ, Harvey CE (1990) Neutralisation patterns among recent British and North American feline calicivirus isolates from different clinical origins. Vet Rec 127: 125–127Google Scholar
  13. 13.
    Neill JD (1990) Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res 17: 145–160Google Scholar
  14. 14.
    Neill JD, EMBL Database sequence number M 32819.Google Scholar
  15. 15.
    Neill JD, Mengeling WL (1988) Further characterisation of the virus-specific RNAs in feline calicivirus infected cells. Virus Res 11: 59–72Google Scholar
  16. 16.
    Povey RC (1974) Serological relationships among feline caliciviruses. Infect Immun 10: 1307–1314Google Scholar
  17. 17.
    Reyes GR, Tam AW, Kim JP, Purdy MA, Yarbough PO, Fry KE, Bradley DW (1990) Hepatitis E virus: molecular characterization of the novel agent responsible for enterically transmitted non-A, non-B hepatitis (ET-NANB). In: Abstracts, VIIIth International Congress of Virology, Berlin 1990 (abstract no. W 11-007), p 38Google Scholar
  18. 18.
    Schaffer FL, Bachrach HL, Brown F, Gillespie JH, Burroughs JN, Madin SH, Madeley CR, Povey RC, Scott F, Smith AW, Studdert MJ, (1980) Caliciviridae. Intervirology 14: 1–6Google Scholar
  19. 19.
    Shepherd JCW (1981) Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc Natl Acad Sci USA 78: 1596–1600Google Scholar
  20. 20.
    Stanley KK (1983) Solubilization and immune detection of Beta-galactosidase hybrid proteins carrying foreign antigenic determinants. Nucleic Acids Res 11: 4077–4092Google Scholar
  21. 21.
    Stanley KK, Luzio JP (1984) Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J 3: 1429–1434Google Scholar
  22. 22.
    Spaan WJM, Delius H, Skinner M, Armstrong J, Rottier P, Smeekens S, van der Zeist BAM, Siddel SG (1983) Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J 2: 1839–1983Google Scholar
  23. 23.
    Tohya Y, Masouka K, Takahashi E, Takeshi M (1991) Neutralizing epitopes of feline calicivirus. Arch Virol 117: 173–181.Google Scholar
  24. 24.
    deVries AAF, Chirnside ED, Bredenbeek PJ, Gravenstein LA, Horzinek MC, Spaan WJM (1990) All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Res 18: 3241–3247Google Scholar
  25. 25.
    Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha and beta subunits of ATP synthetase, myosin kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. J. Carter
    • 1
  • I. D. Milton
    • 1
  • P. C. Turner
    • 2
  • J. Meanger
    • 2
  • M. Bennett
    • 3
  • R. M. Gaskell
    • 4
  1. 1.Division of Virology, School of Pathological SciencesNew Medical SchoolNewcastle upon Tyne
  2. 2.Department of BiochemistryUniversity of LiverpoolLiverpool
  3. 3.Department of Veterinary Clinical ScienceUniversity of LiverpoolLeahurst, WirralU.K.
  4. 4.Department of Veterinary PathologyUniversity of LiverpoolLeahurst, WirralU.K.

Personalised recommendations