Marine Biology

, Volume 105, Issue 3, pp 509–518 | Cite as

Bud formation and metamorphosis inCassiopea andromeda (Cnidaria: Scyphozoa): A developmental and ultrastructural study

  • D. K. Hofmann
  • T. G. Honegger


Asexual reproduction by formation of swimming buds which metamorphose directly into polyps plays a most important role in the propagation ofCassiopea andromeda (Cnidaria: Scyphozoa). (C. andromeda polyps, originally supplied by the Löbbecke Museum and Aquarium Düsseldorf, FRG, were cultured in our laboratories.) We have defined five budding stages and investigated epithelial recruitment and dynamics during bud formation using intracellular vital stains. The region of cell recruitment was found to encircle the budding site asymmetrically. The aboral side contributing considerably less to the developing bud than the oral and lateral sides. Furthermore, it was found that the epithelial flow involved in bud formation is part of a permanent apico-basal displacement of ectodermal cells. Light and electronmicroscopic investigations revealed that no drastic changes occur at the cellular level, neither in the ectoderm nor in the endoderm which both participate in bud formation. Scanning and transmissionelectron microscopic investigations of the swimming bud revealed that the ectoderm is composed of three, and the endoderm of two, cell types. Nerve elements have been detected near the mesoglea between both ecto- and endodermal cells. Amoebocytes are regularly found either at the basis of epidermal cells or within the mesoglea, whereas symbionts are located in the endoderm. Buds induced to metamorphose by a bacterial-inducing factor were used to investigate morphological and ultrastructural changes occurring during metamorphosis and scyphistoma morphogenesis. Metamorphosis starts with the settling of a bud, followed by the formation of the pedal disk in which desmocytes, as typical cnidarian adhesive structures, are differentiated. Metamorphosis is completed with the formation of the mouth and tentacles. Whereas metamorphosis of cnidarian planulae implies considerable changes at the cellular level, tissue remodeling processes prevail in bud metamorphosis ofC. andromeda.


Settling Epidermal Cell Cellular Level Tissue Remodel Ultrastructural Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bigelow, R. P. (1900). The anatomy and development ofCassiopea xamachana. Mem. Boston. Soc. nat. Hist. 5(6):193–236Google Scholar
  2. Campbell, R. D. (1973). Vital marking of single cells in developing tissues: India ink injection to trace tissue movements inHydra. J. Cell Sci. 13:651–661Google Scholar
  3. Chapman, D. M. (1974). Cnidarian histology. In: Muscatine, L., Lenhoff, H. M. (eds.) Coelenterate biology. Academic Press, New York, p. 1–92Google Scholar
  4. Chia, F. S., Amerongen, H. M., Peteya, D. J. (1984). Ultrastructure of the neuromuscular system of the polyp ofAurelia aurita L. 1758 (Cnidaria, Scyphozoa). J. Morph. 180:69–79Google Scholar
  5. Chia, F. S., Koss, R. (1979). Fine-structural studies of the nervous system and the apical organ in the planula larva of the sea anemoneAnthopleura elegantissima. J. Morph. 160:275–298Google Scholar
  6. Curtis, S. K., Cowden, R. R. (1971). Normal and experimental modified development of buds inCassiopea (Phylum Coelenterata; Class Scyphozoa). Acta Embryol. Morph. exp. 3:239–259Google Scholar
  7. Fitt, W. K., Hofmann, D. K., Wolk, M., Rahat, M. (1987). Requirement of exogenous inducers for metamorphosis of axenic larvae and buds ofCassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 94:415–422Google Scholar
  8. Freudenthal, H. D. (1962). Symbiodinium gen. nov. andSymbiodinium adriaticum sp. nov., a zooxanthella: taxonomy, life cycle and morphology. J. Protozool. 9:45–52Google Scholar
  9. Gohar, H. A. F., Eisawy, A. M. (1960). The development ofCassiopea andromeda (Scyphomedusae). Publs mar. biol. Stn Ghardaqa 11:148–190Google Scholar
  10. Hentschel, J., Hündgen, M. (1980). Morphologie und Ultrastruktur des ScyphistomaAurelia aurita (Scyphozoa, Semaestomae). Zool. Jb. (Abt. Anat. Ontog. Tiere) 104:295–316Google Scholar
  11. Hofmann, D. K., Brand, U. (1987). Induction of metamorphosis in the symbiotic scyphozoanCassiopea andromeda: role of marine bacteria and of biochemicals. Symbiosis 4:99–116Google Scholar
  12. Hofmann, D. K., Gottlieb, M. (1990). Bud formation inCassiopea andromeda: Epithelial dynamics and fate map. Hydrobiologia (in press)Google Scholar
  13. Hofmann, D. K., Kremer, B. P. (1981). Carbon metabolism and strobilation inCassiopea andromeda (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates. Mar. Biol. 65:25–34Google Scholar
  14. Hofmann, D. K., Neumann, R., Henne, K. (1978). Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostomeCassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 47:161–176Google Scholar
  15. Honegger, T. G. (1983). Ultrastructural and experimental investigations of sperm-egg interactions in fertilization ofHydra carnea. Wilhelm Roux Arch. EntwMech. Org. 192:13–20Google Scholar
  16. Honegger, T. G. (1984). Ultrastructure of the adhesive tentacles of the limnomedusaVallentinia gabriella (Hydrozoa, Olindiadidae). Zoomorphology 104:26–32Google Scholar
  17. Jha, R. K., Mackie, G. O. (1967). The recognition, distribution and ultrastructure of hydrozoan nerve elements. J. Morph. 123:43–61Google Scholar
  18. Kevin, M. J., Hall, W. T., McLaughlin, J. J. A., Zahl, P. (1969).Symbiodinium microadriaticum Freudenthal, a revised taxonomic description, ultrastructure. J. Phycol. 5:341–350Google Scholar
  19. Ludwig, F. D. (1969). Die Zooxanthellen beiCassiopea andromeda, Eschscholtz 1829 (Polyp Stadium) und ihre Bedeutung für die Strobilation. Zool. Jb. (Abt. Anat. Ontog. Tiere) 86:238–277Google Scholar
  20. Martin, V. J., Chia, F. S. (1982). Fine structure of a scyphozoan planula,Cassiopeia xamachana. Biol. Bull. mar. biol. Lab., Woods Hole 163:320–328Google Scholar
  21. Martin, V. J., Chia, F. S., Koss, R. (1983). A fine structural study of metamorphosis of the hydrozoanMitrocomella polydiademata. J. Morph. 176:262–287Google Scholar
  22. Martin, V. J., Thomas, M. B. (1980). Nerve elements in the planula of the hydrozoanPennaria tiarella. J. Morph. 166:27–36Google Scholar
  23. Martin, V. J., Thomas, M. B. (1981). Elimination of the interstitial cells in the planula larva of the marine hydrozoanPennaria tiarella. J. exp. Zool. 217:303–323Google Scholar
  24. Müller, W. A. (1982). Intercalation and pattern regulation in hydroids. Differentiation 22:141–150Google Scholar
  25. Neumann, R. (1977). Polyp morphogenesis in a scyphozoan: evidence for a head inhibitor from the presumptive foot end in vegetative buds ofCassiopeia andromeda. Wilhelm Roux Arch. EntwMech. Org 183:79–83Google Scholar
  26. Neumann, R. (1979). Bacterial induction of settlement and metamorphosis in the planula larvae ofCassiopea andromeda (Cnidaria, Scyphozoa, Rhizostomeae). Mar. Ecol. Prog. Ser. 1:21–28Google Scholar
  27. Neumann, R., Schmahl, G., Hofmann, D. K. (1980). Bud formation and control of polyp morphogenesis inCassiopea andromeda. In: Tardent, P., Tardent, R. (eds.) Developmental and cellular biology of Coelenterates. Elsevier/North-Holland Biomedical Press, Amsterdam, p. 217–223Google Scholar
  28. Otto, J. J., Campbell, R. D. (1977). Budding inHydra attenuata: bud stages and fate map. J. exp. Zool. 200:417–428Google Scholar
  29. Sato, T. (1967). A modified method for lead staining of thin sections. J. Electron Microsc., Chiba Cy 16:133Google Scholar
  30. Shostak, S., Kankel, D. (1967). Morphogenetic movements during budding inHydra. Devl. Biol. 15:451–463Google Scholar
  31. Walch, T. E., Martin, V. J., Archer, W. E. (1986). Evidence of a microtrabecular cytoskeletal lattice in glandular cells of hydrozoan planulae. J. Morph. 187:353–362Google Scholar
  32. Webster, G., Hamilton, S. (1972). Budding inHydra: The role of cell multiplication and cell movement in bud initiation. J. Embryol. exp. Morph. 27:301–316Google Scholar
  33. Westfall, J. A. (1973). Ultrastructural evidence for neuromuscular systems in Coelenterates. Am. Zool. 13:237–246Google Scholar
  34. Wolk, M., Rahat, M., Fitt, W. K., Hofmann, D. K. (1985). Cholera toxin and thyrotropine can replace natural inducers required for the metamorphosis of larvae and buds of the scyphozoanCassiopea andromeda. Wilhelm Roux Arch. EntwMech. Org. 194:487–490Google Scholar
  35. Wolosewick, J., Porter, K. (1976). Stereo high voltage electron microscopy of whole mounts of human diploid line, WI-38. Am. J. Anat. 147:303–324Google Scholar
  36. Wolosewick, J., Porter, K. (1979). Microtrabecular lattice of the cytoplasmic ground substance. J. Cell Biol. 82:114–139Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. K. Hofmann
    • 1
  • T. G. Honegger
    • 2
  1. 1.Lehrstuhl für Spezielle Zoologie und ParasitologieRuhr UniversitätBochum 1FRG
  2. 2.Department of ZoologieUniversity of ZürichZürichSwitzerland

Personalised recommendations