Journal of Statistical Physics

, Volume 60, Issue 3–4, pp 473–484

First-passage-time approach to overbarrier relaxation of magnetization

  • Ivo Klik
  • Leon Gunther
Articles

Abstract

We consider the irreversible dynamics of the magnetization vectorM in a single-domain particle. The dynamics is given by a stochastic phenomenological equation due to Gilbert. It contains a damping field proportional toM and a corresponding white noise field component. The probability distribution function satisfies a Fokker-Planck equation derived by Brown. We give the overbarrier decay rateκ out of a metastable minimum. First we rederive the well-known expression forκ for an axially symmetric model. We argue that this result is unphysical. For systems of general point symmetry of the magnetic anisotropy energy we giveκ in both the low-damping and intermediate- to high-damping limits.

Key words

First passage times magnetization relaxation superparamagnets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Kramers,Physica 7:284 (1940).Google Scholar
  2. 2.
    B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 35:443 (1984).Google Scholar
  3. 3.
    M. L. Néel,Ann. Geophys. 5:99 (1949).Google Scholar
  4. 4.
    W. F. Brown,Phys. Rev. 130:1677 (1963).Google Scholar
  5. 5.
    A. Aharoni,Phys. Rev. 177:793 (1969).Google Scholar
  6. 6.
    G. S. Agarwal, S. Dattagupta, and K. P. N. Murthy,J. Phys. C: Solid State Phys. 11:6869 (1984).Google Scholar
  7. 7.
    V. G. Bar'yakhtar,Sov. Phys. JETP 60:863 (1984).Google Scholar
  8. 8.
    A. Aharoni,J. Appl. Phys. 61:3302 (1987).Google Scholar
  9. 9.
    A. Aharoni,J. Appl Phys. 62:2576 (1987).Google Scholar
  10. 10.
    D. Walton,J. Magn. Magn. Mat. 62:392 (1986).Google Scholar
  11. 11.
    A. Garg and G.-H. Kim, Preprint.Google Scholar
  12. 12.
    I. Klik and L. Gunther, submitted for publication.Google Scholar
  13. 13.
    B. J. Matkowsky and Z. Schuss,SIAM J. Appl. Math. 40:242 (1981).Google Scholar
  14. 14.
    I. Klik and L. Gunther,J. Appl. Phys. (May 1990).Google Scholar
  15. 15.
    H. I. Brinkman,Physica 22:29, 149 (1956).Google Scholar
  16. 16.
    R. Landauer and J. A. Swanson,Phys. Rev. B 121:1668 (1961).Google Scholar
  17. 17.
    J. S. Langer,Ann. Phys. 54:258 (1969).Google Scholar
  18. 18.
    M. M. Dygas, B. J. Matkowsky, and Z. Schuss,SIAM J. Appl. Math. 46:265 (1986).Google Scholar
  19. 19.
    T. Naeh, M. M. Klosek, B. J. Matkowsky, and Z. Schuss,SIAM J. Appl. Math. 50(2) (1990).Google Scholar
  20. 20.
    J. A. M. Janssen,Physica A 152:145 (1988).Google Scholar
  21. 21.
    R. S. Gekht, V. A. Ignatchenko, Yu. L. Raikher, and M. I. Shliomis,Sov. Phys. JETP 43:677 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Ivo Klik
    • 1
  • Leon Gunther
    • 1
  1. 1.Department of Physics and AstronomyTufts UniversityMedford

Personalised recommendations