Marine Biology

, Volume 106, Issue 2, pp 211–218 | Cite as

Stimulation of fat-body production in the polyps of the coralPocillopora damicornis by the presence of mutualistic crabs of the genusTrapezia

  • J. Stimson


A mutualism exists between the xanthid crabs of the genusTrapezia and their host corals,Pocillopora damicornis. It has previously been established that these obligate coral residents benefit the coral hosts by defending them against echinoderm predators and by increasing the survival of polyps located deep between the coral branches. In turn, the corals apparently benefit the crabs by producing lipid-filled structures on which the trapezid crabs feed; these fat bodies may contain some of the lipid which in previous studies of coral metabolism has been termed “excess”. It was determined by experiments conducted at the Hawaii Institute of Marine Biology that the presence of crabs in colonies ofP. damicornis stimulates the polyps to produce the lipid-filled fat bodies; removal of crabs causes corals to cease producing fat bodies. A structure very similar to the fat bodies ofP. damicornis has been reported inAcropora durvillei. Both of these coral genera ordinarily possess xanthid-crab mutualists. This association between branching corals and crustaceans may have evolved because corals of these genera provide shelter among their branches and because these shallow-water corals are evidently capable of releasing lipid which is excess to the corals' metabolic needs, but which can be utilized by the crabs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, J., Bellamy, D. J., Jones, D. J., Whitton, B. A., Drew, E. A., Kenyon, L., Lythgoe, J. N., Rosen, B. T. (1971). Morphology and ecology of the reef front of Aldabra. Symp. zool. Soc. Lond. 28: 87–114Google Scholar
  2. Benson, A. A., Muscatine, L. (1974). Wax in coral mucus: energy transfer from corals to reef fishes. Limnol. Oceanogr. 19: 810–814Google Scholar
  3. Benson, A. A., Patton, J. S., Abraham, S. (1978). Energy exchange in coral reef ecosystems. Atoll Res. Bull. 220: 33–54Google Scholar
  4. Bergman, W., Creighton, S. M., Stokes, W. M. (1956). Contributions to the study of marine products. XL. Waxes and triglycerides of sea anemones. J. org. Chem. 21: 721–728Google Scholar
  5. Blanquet, R. S., Nevenzel, J. C., Benson, A. A. (1979). Acetate incorporation into the lipids of the anemoneAnthopleura elegantissima and its associated zooxanthellae. Mar. Biol. 54: 185–194Google Scholar
  6. Crossland, C. J. (1987). In situ release of mucus and DOC-lipid from the coralsAcropora variabilis andStylophora pistillata in different light regimes. Coral Reefs 6: 35–42Google Scholar
  7. Crossland, C. J., Barnes, D. J., Borowitzka, M. A. (1980a). Diurnal lipid and mucus production in the staghorn coralAcropora acuminata. Mar. Biol. 60: 81–90Google Scholar
  8. Crossland, C. J., Barnes, D. J., Cox, T., Devereux, M. (1980b). Compartmentation and turnover of organic carbon in the staghorn coralAcropora formosa. Mar. Biol. 59: 181–187Google Scholar
  9. Daumas, R. R., Galois, R., Thomassin, B. A. (1982). Biochemical composition of soft and hard coral mucus on a New Caledonian lagoonal reef. Proc. 4th int. Symp. coral Reefs 2: 59–67. [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]Google Scholar
  10. Daumas, R., Thomassin, B. A. (1977). Protein fractions in coral and zoantharian mucus, possible evolution in coral reef environment. Proc. 3rd int. Symp. coral Reefs 1: 517–523. [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami, Miami]Google Scholar
  11. Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements ofPocillopora eydouxi. Coral Reefs 2: 181–186Google Scholar
  12. Dollar, S. (1982). Wave stress and coral community structure in Hawaii. Coral Reefs 1: 71–81Google Scholar
  13. Ducklow, H. W., Mitchell, R. (1979a). Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24: 706–714Google Scholar
  14. Duckow, H. W., Mitchell, R. (1979b). Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24: 715–725Google Scholar
  15. Edwards, A., Emberton, H. (1980). Crustacea associated with the scleractinian coralStylophora pistillata (Esper) in the Sudanese Red Sea. J. exp. mar. Biol. Ecol. 42: 225–240Google Scholar
  16. Falkowski, P. G., Dubinsky, Z., Muscatine, L., Porter, J. W. (1984). Light and the bioenergetics of a symbiotic coral. BioSci. 34: 705–709Google Scholar
  17. Fowler, G. H. (1887). The anatomy of the Madreporaria: II. Q. Jl microsc. Sci. 27: 1–16Google Scholar
  18. Glynn, P. W. (1976). Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr. 46: 431–455Google Scholar
  19. Glynn, P. W. (1983a). Increased survivorship in corals harboring crustacean symbionts. Mar. Biol. Lett. 4: 105–111Google Scholar
  20. Glynn, P. W. (1983b). Crustacean symbionts and the defense of corals: coevolution of the reef? In: Nitecki, M. H. (ed.) Coevolution. University of Chicago Press, Chicago, p. 111–178Google Scholar
  21. Gotelli, N. J., Abele, L. G. (1983). Community patterns of coral-associated decapods. Mar. Ecol. Prog. Ser. 13: 131–139Google Scholar
  22. Gotelli, N. J., Gilchrist, S. L., Abele, L. G. (1985). Population biology ofTrapezia spp. and other coral-associated decapods. Mar. Ecol. Prog. Ser. 21: 89–98Google Scholar
  23. Highsmith, R. C. (1982). Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7: 207–226Google Scholar
  24. Hosai, K. (1947). Contribution to the biochemistry of the coral. X. A note on the comparative physiology of the coralFungia actiniformis var.palawensis Doderlein. Sci. Rep. Tôhoku Univ. (Ser. 4) 18: 85–87Google Scholar
  25. Janzen, D. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution, Lawrence, Kansas 20: 249–275Google Scholar
  26. Johannes, R. E. (1967). Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12: 189–195Google Scholar
  27. Jokiel, P. L., Maragos, J. E., Franzisket, L. (1978). Coral growth: buoyant weight technique. In: Stoddart, D. R., Johannes R. E. (eds.) Coral reefs: research methods. UNESCO, Paris, France, p. 529–541Google Scholar
  28. Knudsen, J. W. (1967).Trapezia andTetralia (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pacif. Sci. 21: 51–57Google Scholar
  29. Keeler, K. H. (1981). A model of selection for facultative non-symbiotic mutualism. Am. Nat. 118: 488–498Google Scholar
  30. Krupp, D. (1982). The composition of the mucus from the mushroom coral,Fungia scutaria. Proc. 4th int. Symp. coral Reefs 2: 69–73. [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]Google Scholar
  31. Luna, L. G. (1968). Manual of histological staining methods. 3rd ed. McGraw-Hill, New YorkGoogle Scholar
  32. McCloskey, L. R., Muscatine, L. (1984). Production and respiration in the Red Sea coralStylophora pistillata as a function of depth. Proc. R. Soc. (Ser. B) 222: 215–230Google Scholar
  33. Meyers, P. A. (1977). Fatty acids and hydrocarbons of Caribbean corals. Proc. 3rd int. Symp. coral Reefs 1: 529–539. [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami, Miami]Google Scholar
  34. Muscatine, L., Cernichiari, E. (1969). Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137: 506–523Google Scholar
  35. Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z. (1984). Fate of photosynthetic fixed carbon in light and shade-adapted colonies of the symbiotic coralStylophora pistillata. Proc. R. Soc. (Ser. B) 222: 181–202Google Scholar
  36. Muscatine, L., McCloskey, L. R., Loya, Y. (1985). A comparison of the growth rates of zooxanthellae and animal tissue in the Red Sea coralStylophora pistillata. Proc. 5th int. coral Reef Congr. 6: 119–123. [Gabrié, C., et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  37. Patton, J. S., Abraham, S., Benson, A. A. (1977). Lipogenesis in the intact coralPocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol. 44: 235–247Google Scholar
  38. Pearson, R. G., Endean, R. (1969). A preliminary study of the coral predatorAcanthaster planci (L.) (Asteroidea) on the Great Barrier Reef. Fisheries Notes (Department of Harbours and Marine, Queensland) 3: 27–68 (not seen, cited after Glynn 1983b)Google Scholar
  39. Reed, J. K., Gore, R. H., Scotto, L. E., Wilson, K. A. (1982). Community composition, structure, areal and trophic relationships of decapods associated with shallow- and deep-waterOculina varicosa coral reefs. Bull. mar. Sci. 32: 761–786Google Scholar
  40. Richman, S., Loya, Y., Slobodkin, L. B. (1975). The rate of mucus production by corals and its assimilation by the coral reef copepodAcartia negligens. Limnol. Oceanogr. 20: 918–923Google Scholar
  41. Richmond, R. H., Jokiel, P. L. (1984). Lunar periodicity in larva release in the reef coralPocillopora damicornis at Enewetak and Hawaii. Bull. mar. Sci. 34: 280–287Google Scholar
  42. Rosen, B. R. (1975). The distribution of reef corals. Rep. Underwat. Ass. (N.S.) 1: 1–16Google Scholar
  43. Sheppard, C. R. C. (1980). Coral cover, zonation and diversity on reef slopes of Chagos atolls, and population structures of the major species. Mar. Ecol. Prog. Ser. 2: 193–205Google Scholar
  44. Stimson, J. S. (1984). Possible uses of lipids stored in coral tissues. (Abstract No. 429) Am. Zool. 24: p. 78AGoogle Scholar
  45. Stimson, J. S. (1987). Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull. mar. Sci. 41: 889–904Google Scholar
  46. Weber, J. N. Woodhead, P. M. J. (1970). Ecological studies of the coral predatorAcanthaster planci in the South Pacific. Mar. Biol. 6: 12–17Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Stimson
    • 1
  1. 1.Zoology DepartmentUniversity of HawaiiHonoluluUSA

Personalised recommendations