Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 72, Issue 4, pp 515–521 | Cite as

Generalised equal areas rules for spatially extended systems

  • E. Schöll
  • P. T. Landsberg
Article

Abstract

It is shown that equal areas rules which exist in such different fields as thermodynamics (Maxwell construction), chemical reaction theory (nonequilibrium phase transitions), and semiconductor physics (Gunn-Hilsum effect; current filamentation; grain boundaries) arise as special cases of a general relation between control parameters and boundary values of a second order ordinary differential equation,. They allow one to extract relevant information about spatial profiles of some physical variable in extended systems directly from the constitutive differential equation without explicitly solving it.

Keywords

Differential Equation Neural Network Phase Transition General Relation Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Kampen, N.G.: Phys. Rev.135A, 362 (1964)Google Scholar
  2. 2.
    de Gennes, P.G.: Rev. Mod. Phys.57, 827 (1985)Google Scholar
  3. 3.
    Cahn, J.W.: J. Chem. Phys.66, 3667 (1977)Google Scholar
  4. 4.
    Levinson, P., Jouffroy, J., Brochard, F.: J. Physique Lett.46, L-21 (1985)Google Scholar
  5. 5.
    Butcher, P.: Phys. Lett.19, 546 (1965)Google Scholar
  6. 6.
    Volkov, A.F., Kogan, S.M.: Sov. Phys. Usp.11, 881 (1969).Google Scholar
  7. 7.
    Schlögl, F.: Z. Phys.253, 147 (1972)Google Scholar
  8. 8.
    Adler, D., Shur, M.S., Silver, M., Ovshinsky, S.R.: J. Appl. Phys.51, 3289 (1980)Google Scholar
  9. 9.
    Schöll, E.: J. Physique C7, 57 (1981)Google Scholar
  10. 10.
    Schöll, E.: Solid-State Electron.29, 687 (1986)Google Scholar
  11. 11.
    Schöll, E.: Nonequilibrium phase transitions in semiconductors. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  12. 12.
    Knight, B.W., Peterson, G.A.: Phys. Rev.155, 393 (1961)Google Scholar
  13. 13.
    Shaw, M.P., Grubin, H.L., Solomon, P.: The Gunn-Hilsum effect, p. 14. New York: Academic Press 1979Google Scholar
  14. 14.
    Landsberg, P.T., Pimpale, A.: J. Phys. C9, 1243 (1976)Google Scholar
  15. 15.
    Schöll, E.: Z. Phys. B-Condensed Matter B48, 153, (1982)Google Scholar
  16. 16.
    Schöll, E.: J. Appl. Phys.60, 1434 (1986)Google Scholar
  17. 17.
    Landsberg, P.T., Abrahams, M.S.: J. Appl. Phys.55, 4284 (1984)Google Scholar
  18. 18.
    Schnakenberg J.: Z. Phys. B-Condensed Matter68, 271 (1987)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • E. Schöll
    • 1
  • P. T. Landsberg
    • 2
  1. 1.Institut für Theoretische PhysikRWTH AachenAachenFederal Republic of Germany
  2. 2.Department of MathematicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations