Marine Biology

, Volume 104, Issue 3, pp 363–367 | Cite as

Metabolism and swimming efficiency of the bonnethead sharkSphyrna tiburo

  • G. R. Parsons


Routine metabolic rates of bonnethead sharks,Sphyrna tiburo, of 95 to 4 650 g, ranged from 70.4 to 15.0 kcal kg−1 d−1. Over the size range 34 to 95 cm total length, shark swimming-velocities varied from about 29 to 67 cm s−1. Swimming velocities predicted using Weih's cost-optimization model were similar to observed velocities. The total cost of transport (the energetic cost of transporting 1 unit of body mass 1 km distance) for 1 to 8 kg sharks varied from 0.67 to 0.40 cal g−1 km−1. The “energetic range” (an estimation of the distance traveled after a 25% reduction in body weight) indicates that a 1 kg bonnethead shark would travel 500 km distance in 17 d before displaying a 25% reduction in weight. An 8 kg individual would travel 830 km in 23 d. Although the bonnethead shark is a continuously active species, its routine metabolic rate and the efficiency of its locomotory system may be similar to that of “typical” bony fishes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anonymous (1975). A study of the applications of remote sensing techniques for detection and enumeration of giant bluefin tuna. NOAA natn. mar. Fish. Serv. mar. Resour. Monitg Assessmt (MARMAP) 108: 1–48Google Scholar
  2. Averett, R. C. (1969). Influence of temperature on energy and material utilization by juvenile coho salmon. Ph.D. thesis, Oregon State University, CorvallisGoogle Scholar
  3. Brafield, A. E., Solomon, D. J. (1972). Oxycalorific coefficients for animals respiring nitrogenous substrates. Comp. Biochem. Physiol. 443: 837–841Google Scholar
  4. Brett, J. R. (1964). The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd Can. 21: 1183–1226Google Scholar
  5. Brett, J. R. (1965). The relation of size to rate of oxygen consumption and sustained swimming speed of sockeye salmon,Oncorhynchus nerka. J. Fish. Res. Bd Can. 22: 1491–1501Google Scholar
  6. Brett, J. R. (1976). Feeding metabolic rates of sockeye salmon,Oncorhynchus nerka, and some related energetics. J. Fish Res. Bd Can. 33: 307–313Google Scholar
  7. Brett, J. R., Blackburn, J. M. (1977). Metabolic rate and energy expenditure of the spiny dogfish,Squalus acanthias. J. Fish. Res. Bd Can. 35: 816–821Google Scholar
  8. Brett, J. R., Groves, T. D. D. (1979) Physiological energetics. In: Hoar, W. S., Randall, D. J. Brett, J. R. (eds.) Fish physiology. Vol. 8. Academic Press, London and New York, p. 279–352Google Scholar
  9. Brill, R. W. (1987). On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change. Fish. Bull. U.S. 85: 25–35Google Scholar
  10. Chan, D. K. O., Wong, T. M. (1977) Physiological adjustments to dilution of the external medium in the lip shark,Hemiscyllium plagiosum (Bennet). III. Oxygen consumption and metabolic rate. J. exp. Zool. 200: 97–102Google Scholar
  11. Elliot, J. E. (1969). The oxygen requirement of chinook salmon. Progve Fish Cult. 31: 67–73Google Scholar
  12. Glass, N. R. (1969). Discussion of calculation of power function with special reference to respiratory metabolism in fish. Fish. Res. Bd Can. 26: 2643–2650Google Scholar
  13. Gruber, S. H. (1984). Bioenergetics of the captive and free ranging lemon sharkNegaprion brevirostris. In: Annual Proceedings of American Association of Zoological Parks and Aquariums (AAZPA). AAZPA, Wheeling, W. Virginia, p. 339–373Google Scholar
  14. Huisman, E. A. (1974). A study on optimal rearing conditions for carp (Cyprinus carpio). Ph.D. thesis. Agricultural University, Wageningen. (Spec. Publtiës Organis. Verbeter. Binnenviss. Utrecht)Google Scholar
  15. Kausch, H. (1972). Stoffwechsel und Ernährung der Fische. Handb. Tierernähr. 2 (8): 690–738. [Transl. Ser. Fish. mar. Serv. Can. No. 2489 (1973)]Google Scholar
  16. Kitchell, J. F., Neill, W. H., Dizon, A. E., Magnuson, J. J. (1978). Bioenergetic spectra of skipjack and yellowfin tunas. In: Sharp, G. D., Dizon, A. E. (eds.) The physiological ecology of tunas. Academic Press, London, New York, p. 357–368Google Scholar
  17. Laurs, R. M., Yuen, H. S., Johnson, J. H. (1977). Small scale movements of albacoreThunnus alalunga in relation to ocean features as indicated by ultrasonic tracking and oceanographic sampling. Fish. Bull. U.S. 75: 347–356Google Scholar
  18. Lindsey, C. C. (1978). Form, function, and locomotory habits in fish. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology. Vol. 7. Academic Press, New York, p. 1–100Google Scholar
  19. Magnuson, J. J. (1973) Comparative study of adaptations for continuous swimming and hydrostatic equilibrium of scombroid and xiphoid fishes. Fish. Bull. U.S. 71: 337–356Google Scholar
  20. Magnuson, J. J. (1978). Locomotion by scombrid fishes — hydromechanics, morphology, and behaviour. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology. Vol. 7. Academic Press, New York, p. 239–313Google Scholar
  21. Mann, H. (1968). Der Einfluß der Ernährung auf den Sauerstoffverbrauch von Forellen. Arch. FischWiss. 19: 131–133Google Scholar
  22. Muir, B. S., Niimi, A. J. (1972). Oxygen consumption of the euryhaline fish aholehole (Kuhlia sandivicensis) with reference to salinity, swimming, and food consumption. J. Fish. Res. Bd Can. 29: 67–77Google Scholar
  23. Osborne, M. F. M. (1961). The hydrodynamical performance of migratory salmon. J. exp. Biol. 38: 365–390Google Scholar
  24. Parsons, G. R. (1987). Life history and bioenergetics of the bonnethead shark,Shyrna tiburo: a comparison of two populations. Unpublished Ph.D. dissertation. University of South Florida at St. PetersburgGoogle Scholar
  25. Pierce, R. J., Wissing, T. E. (1974) Energy cost of food utilization in the bluegill (Lepomis macrochirus). Trans. Am. Fish. Soc. 103: 38–45Google Scholar
  26. Saunders, R. L. (1963). Respiration of the Atlantic cod. J. Fish. Res. Bd Can. 20: 373–386 (1963)Google Scholar
  27. Schmidt-Nielsen, K. (1972). Locomotion: energy cost of swimming, flying, and running. Science, N.Y. 117: 222–228Google Scholar
  28. Sharp, G. D., Dizon, A. E. (1978). The physiological ecology of tunas. Academic Press, New YorkGoogle Scholar
  29. Solomon, D. J., Brafield, A. E. (1972). The energetics of feeding, metabolism and growth of perch (Perca fluviatilis L.). J. Anim. Ecol. 41: 699–718Google Scholar
  30. Warren, C. E. (1971). Biology and water pollution control. Saunders, Philadelphia, PennsylvaniaGoogle Scholar
  31. Webb, P. W. (1971). The swimming energetics of trout. II. Oxygen consumption and swimming efficiency. J. exp. Biol. 55: 521–540PubMedGoogle Scholar
  32. Webb, P. W. (1975). Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Bd Can. 190: 1–159Google Scholar
  33. Webb, P. W., Keyes, R. S. (1982). Swimming kinematics of sharks. Fish. Bull. U.S. 80: 803–812Google Scholar
  34. Weihs, D. (1974). Energetic advantages of burst swimming of fish. J. theor. Biol. 48: 215–229PubMedGoogle Scholar
  35. Weihs, D. (1977). Effects of size on sustained swimming speeds of aquatic organisms. In: Pedley, T. J. (ed.) Scale effects in animal locomotion. Academic Press, New York, p. 333–338Google Scholar
  36. Weihs, D. (1981). Body section variations in sharks: an adaptation for efficient swimming. Copeia 1981: 217–219Google Scholar
  37. Weihs, D., Keyes, R. S., Stalls, D. M. (1981). Voluntary swimming speeds of two species of large carcharhinid sharks. Copeia 1981: 219–222Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. R. Parsons
    • 1
  1. 1.Freshwater Biology Program, Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations