Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 84, Issue 3, pp 471–482 | Cite as

Dissipative quantum dynamics in a multiwell system

  • Ulrich Weiss
  • Maura Sassetti
  • Thomas Negele
  • Matthias Wollensak
Article

Abstract

We investigate the dynamics of a quantum particle moving in a tight-binding lattice and coupled to a heat bath environment. Using the Feynman-Vernon influence functional method, we obtain an exact series representation in powers of the tunneling matrix for the generating functional of moments of the probability distribution which is valid for arbitrary temperatures and linear dissipation. We prove that the Einstein relation between the linear mobility and the diffusion coefficient holds to any order of the expansion for Ohmic, and for a restricted region of super-Ohmic dissipation. We also compute in the Ohmic case the mobility in certain regions of the parameter space. In particular, we find that the low temperature correction to the zero temperature mobility behaves asT2, and we also determine the prefactor. Finally, the exact solution of the dynamics for any times, temperatures and bias is presented for a particular value of the damping strength in the case of strict Ohmic dissipation.

Keywords

Series Representation Quantum Dynamic Quantum Particle Heat Bath Temperature Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feynman, R.P., Vernon, F.L.: Ann. Phys. (N.Y.)24, 118 (1963)Google Scholar
  2. 2.
    Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)Google Scholar
  3. 3.
    Weiss, U., Grabert, H., Linkwitz, S.: J. Low Temp. Phys.68, 213 (1987)Google Scholar
  4. 4.
    Hakim, V., Ambegaokar, V.: Phys. Rev. A32, 423 (1985)Google Scholar
  5. 5.
    Grabert, H., Schramm, P., Ingold, G.L.: Phys. Rep.168, 115 (1988)Google Scholar
  6. 6.
    Chen, Y.C., Lebowitz, J.L., Liverani, C.: Phys. Rev. B40, 4664 (1989)Google Scholar
  7. 7.
    Mak, C.H., Chandler, D.: Phys. Rev. A41, 5709 (1990)Google Scholar
  8. 8.
    Sassetti, M., Weiss, U.: Phys. Rev. A41, 5383 (1990)Google Scholar
  9. 9.
    Sassetti, M., Weiss, U.: Phys. Rev. Lett.65, 2262 (1990)Google Scholar
  10. 10a.
    Flynn, C.P., Stoneham, A.M.: Phys. Rev. B1, 3966 (1970);Google Scholar
  11. 10b.
    Kagan, Y., Klinger, M.I.: J. Phys. C7, 2791 (1974);Google Scholar
  12. 10c.
    Teichler, H., Seeger, A.: Phys. Lett. A82, 91 (1981)Google Scholar
  13. 11.
    For a general review, see the Proceedings of the Fourth Conference on Muon Spin Rotations, Uppsala, 1986 [Hyperfine Interact.31, (1986)]Google Scholar
  14. 12.
    Kondo, J.: In: Kondo, J., Yoshimori, A. (eds.), Vol. 77. Fermi Surface Effects. Springer Series in Solid-State Sciences, Berlin, Heidelberg, New York: Springer 1988, and references thereinGoogle Scholar
  15. 13.
    Zwerger, W.: Phys. Rev. B35, 4737 (1987)Google Scholar
  16. 14.
    Schön, G., Zaikin, A.D.: Phys. Rep.198, 237 (1990)Google Scholar
  17. 15.
    Fisher, M.P.A., Zwerger, W.: Phys. Rev. B32, 6190 (1985)Google Scholar
  18. 16.
    Eckern, U., Pelzer, F.: Europhys. Lett.3, 131 (1987)Google Scholar
  19. 17a.
    Weiss, U., Wollensak, M.: Phys. Rev. B37, 2729 (1988);Google Scholar
  20. 17b.
    Wollensak, M.: Dissertation (Universität Stuttgart, 1988)Google Scholar
  21. 18.
    Caldeira, A.O., Leggett, A.J.: Ann. Phys. (N.Y.)149, 374 (1983)Google Scholar
  22. 19.
    Weiss, U., Grabert, H., Hänggi, P., Riseborough, P.: Phys. Rev. B35, 9535 (1987)Google Scholar
  23. 20.
    Rodenhaussen, H.: J. Stat. Phys.55, 1065 (1989)Google Scholar
  24. 21.
    Weiss, U., Grabert, H.: Phys. Lett. A108, 63 (1985)Google Scholar
  25. 22.
    This approximation is referred to in [2] as the noninteracting blip approximationGoogle Scholar
  26. 23a.
    Grabert, H., Weiss, U.: Phys. Rev. Lett.54, 1605 (1985);Google Scholar
  27. 23b.
    Fisher, M.P.A., Dorsey, A.T.: Phys. Rev. Lett.54, 1609 (1985)Google Scholar
  28. 24.
    Aslangul, C., Pottier, N., Saint-James, D.: J. Phys. (Paris)47, 1671 (1986)Google Scholar
  29. 25.
    Schmid, A.: Phys. Rev. Lett.51, 1506 (1983)Google Scholar
  30. 26a.
    Grabert, H., Weiss, U., Hänggi, P.: Phys. Rev. Lett.52, 2193 (1984);Google Scholar
  31. 26b.
    Grabert, H., Weiss, U.: Phys. B-Condensed Matter56, 171 (1984)Google Scholar
  32. 27.
    Martinis, J.M., Grabert, H.: Phys. Rev. B38, 2371 (1988)Google Scholar
  33. 28.
    Gradshteyn, I.S., Ryzhik, I.M.: In: Tables of integrals, series and products. New York: Academic Press 1981Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Ulrich Weiss
    • 1
  • Maura Sassetti
    • 2
  • Thomas Negele
    • 3
  • Matthias Wollensak
    • 3
  1. 1.Dipartimento di Fisica, CFSBT/CNRUniversità di GenovaGenovaItaly
  2. 2.Istituto di Fisica di IngegneriaConsorzio INFM e CFSBT/CNR, Università di GenovaGenovaItaly
  3. 3.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Federal Republic of Germany

Personalised recommendations