Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 84, Issue 3, pp 433–441 | Cite as

Domain formation due to Ostwald ripening in bistable systems far from equilibrium

  • L. Schimansky-Geier
  • Ch. Zülicke
  • E. Schöll
Article

Abstract

We develop growth rates ford-dimensional domains in bistable reaction-diffusion systems. The growth of the domain is restrained by an inhibitory nonlocal interaction and leads to stable stationary inhomogeneous states as known from many applications in nonequilibrium systems. The mathematical analysis is quite similar to problems of Ostwald ripening in van-der-Waals gases though the physical mechanism is different. We show that the nonlocal interaction leads to a competition between several domains. Finally our approach is applied to optical bistability, thermokinetic systems and to nonlinear semiconductors.

Keywords

Spectroscopy Growth Rate Neural Network State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicolis, G., Prigogine, I.: Self-organization in non-equilibrium systems. New York: Wiley 1977Google Scholar
  2. 2.
    Thomas, H.: Critical phenomena. In: Lecture Notes in Physics. Hahne, F.J.W. (ed.), Vol. 186, p. 141. Berlin, Heidelberg, New York, Tokyo: Springer 1983Google Scholar
  3. 3.
    Haken, H. (ed.): Advanced synergetics. In: Springer Series in Synergetics. Vol. 20. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  4. 4.
    Kerner, B.S., Osipov, V.V.: Usp. Fiz. Nauk157, 201 (1989 (in Russian); [Sov. Phys. Usp.32, 101 (1989)]Google Scholar
  5. 5.
    Ebeling, W., Förster, A., Kremp, D., Schlanges, M.: Physica A96, 453 (1989)Google Scholar
  6. 6.
    Schöll, E. (ed.): Nonequilibrium phase transitions in semiconductors. In: Springer Series in Synergetics. Vol. 35. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  7. 7a.
    Lugiato, L.A., Lefever, R.: Phys. Rev. Lett.58, 2209 (1987);Google Scholar
  8. 7b.
    Akhmanov, S., Emelyanov, V., Korotejev, N.: The strong laser beam-solid interactions and nonlinear diagnostics of surfaces. In: Teubner Texte zur Physik. Vol. 25. Leipzig: Teubner 1990Google Scholar
  9. 8.
    Krinsky, V.I. (ed.): Self-organization, autowaves and dissipative structures far from equilibrium. In: Springer Series in Synergetics, Vol. 28. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  10. 9.
    Cox, M.P., Ertl, G., Imbihl, R.: Phys. Rev. Lett.54, 1725 (1985)Google Scholar
  11. 10a.
    Fisher, R.A.: Ann. Eugen. (London)7, 355 (1937);Google Scholar
  12. 10b.
    Kolmogoroff, A.N., Petrovsky, L.G., Piscounoff, N.S.: Ann. Univ. Moscou. Ser. A1, 1 (1937);Google Scholar
  13. 10c.
    Murray, J.D.: Lectures on nonlinear-differential-equation-models in biology. Oxford: Clarendon Press 1977Google Scholar
  14. 11a.
    Svirechev, Yu.M.: Nonlinear waves, dissipative structures and catastrophes in ecology. Moscow: Nauka 1987 (in Russian);Google Scholar
  15. 11b.
    Malchow, H.: Mem. Fac. Sci. Kyoto Univ. Ser. Biol.13, 83 (1988)Google Scholar
  16. 12a.
    Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: The Mathematical theory of combustion and explosion. New York: Consultants Bureau 1985;Google Scholar
  17. 12b.
    Vasilev, V.A., Romanovsky, Yu.M., Chernavsky, D.S., Yakhno, V.G.: Autowave processes in kinetic systems. Berlin: Deutscher Verlag der Wissenschaften 1987Google Scholar
  18. 13.
    Malchow, H., Schimansky-Geier, L.: Noise and diffusion in bistable nonequilibrium systems. In: Teubner-Texte zur Physik. Vol. 5. Leipzig: Teubner 1985Google Scholar
  19. 14a.
    Montroll, E.W., Shuler, K.E.: Adv. Chem. Phys.1 361 (1958);Google Scholar
  20. 14b.
    see also: Nitzan, A., Ortoleva, P., Ross, J.: Faraday Symp. Chem. Soc.9, 241 (1974)Google Scholar
  21. 15a.
    Magyari, E.: J. Phys. A15, L 139 (1982);Google Scholar
  22. 15b.
    Schlögl, F., Escher, C., Berry, R.S. Phys. Rev. A27, 2698 (1983)Google Scholar
  23. 16.
    Schlögl, F.: Z. Phys. B-Condensed Matter253, 147 (1972)Google Scholar
  24. 17a.
    Ebeling, W., Ivanov, C., Schimansky-Geier L.: Rostocker Phys. Manuskr.2, 93 (1977);Google Scholar
  25. 17b.
    Chan, S.K.: J. Chem. Phys.67, 5755 (197);Google Scholar
  26. 17c.
    Belintsev, B.N., Lifshitz, M.A., Volkenstein M.V.: Z. Phys. B-Condensed Matter30, 211 (1978); for the stochastic case: Schimansky-Geier, L., Ebeling, W.: Ann. Phys. (Leipzig)40, 10 (1983)Google Scholar
  27. 18.
    For the general case: Kawasaki, K., Ohta, T.: Progr. Theor. Phys.67, 147 (1982)Google Scholar
  28. 19.
    In random media: Ebeling, W., Engel, A., Schimansky-Geier, L., Zülicke, Ch.: Dynamics of fronts, nuclei and patterns in 2D random media. Physica49D, 170 (1991)Google Scholar
  29. 20.
    van Kampen, N.G.: Phys. Rev. A135, 362 (1964)Google Scholar
  30. 21.
    Schöll, E., Landsberg, P.T.: Z. Phys. B-Codensed Matter72, 515 (1988)Google Scholar
  31. 22a.
    Ross, B., Lister, J.D.: Phys. Rev. A15, 1246 (1977);Google Scholar
  32. 22b.
    Landauer, R.: Phys. Rev. A15, 2117 (1977);Google Scholar
  33. 22c.
    Bedeaux, D., Mazur, P., Pasmanter, R.A. Physica A86, 355 (1977);Google Scholar
  34. 22d.
    Mazur, P., Bedeaux, D.: J. Stat. Phys.24 215 (1981);Google Scholar
  35. 22e.
    Bedeaux, D., Mazur, P.: Physica A105 1 (1981)Google Scholar
  36. 23.
    Elmer, F.J.: Phys. Rev. A41, 4174 (1990)Google Scholar
  37. 24.
    Ulbricht, H., Schmelzer, J., Mahnke, R. Schweitzer, F.: Thermodynamics of finite systems and the kinetics of first-order phase transitions. Teubner-Texte zur Physik, Vol. 17. Leipzig: Teubner 1985Google Scholar
  38. 25.
    Schöll, E.: Z. Phys. B-Condensed Matter48, 153 (1982); Z. Phys. B-Condensed Matter52, 321 (1983); Solid State Electron.29, 687 (1986)Google Scholar
  39. 26.
    Purwins, H.-G., Klempt, G., Berkemeier, J.: Adv. Solid State Phys.27, 27 (1987)Google Scholar
  40. 27.
    Henneberger, F., Roßmann, H.: Phys. Status Solidi B121, 685 (1984)Google Scholar
  41. 28.
    Buzdin, A.I., Mikhailov, A.S.: Zh. Eksp. Teor. Fiz.90, 294 (1986) (in Russian)Google Scholar
  42. 29.
    Zülicke, Ch., Mikhailov, A.S., Schimansky-Geier, L.: Physica A163, 559 (1990)Google Scholar
  43. 30.
    Elmer, F.J.: Phys. Rev. A (submitted)Google Scholar
  44. 31.
    Belintsev, B.N., Lifshitz, M.A., Volkenstein M.V.: Dokl. Akad. Nauk SSR25, 487 (1981) (in Russian); Phys. Lett. A82, 20 (1981)Google Scholar
  45. 32.
    Masterov, A.V., Yakhno, V.G.: In: Yakhno V.G. (ed.): Collective dynamics of excitations and structure formation in biological tissues. Gorky: Inst. of Applied Phys. 1988 (in Russian)Google Scholar
  46. 33.
    Landau, L.D., Lifshitz, E.M.: Lehrbuch der Theoretischen Physik, Vol. 10: Physikalische Kinetik. Berlin: Akademie-Verlag 1983Google Scholar
  47. 34.
    Lifshitz, I.M., Slyozov, V.V.: Zh. Eksp. Teor. Fiz.25, 479 (1958) (in Russian); J. Phys. Chem.19, 35 (1961)Google Scholar
  48. 35.
    Schimansky-Geier, L., Schweitzer, F., Ebeling, W., Ulbricht, H.: In: Ebeling, W., Ulbricht, H. (eds.): Selforganization by Nonlinear Irreversible Processes. Springer Series in Synergetics, Vol. 33. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  49. 36.
    Eigen, M.: Naturwiss.58, 465 (1971)Google Scholar
  50. 37a.
    Mahnke, R., Feistel, R.: Rostocker Phys. Manuskr.8 54 (1985);Google Scholar
  51. 37b.
    Ebeling, W., Engel, A., Feistel, R. Physik der Evolutionsprozesse. Berlin: Akademie-Verlag 1990Google Scholar
  52. 38.
    Schöll, E., Drasdo, D.: Z. Phys. B-Condensed Matter81, 183 (1990)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • L. Schimansky-Geier
    • 1
  • Ch. Zülicke
    • 1
  • E. Schöll
    • 2
  1. 1.Institut für Theoretische PhysikHumboldt-Universität zu BerlinBerlinFederal Republic of Germany
  2. 2.Institut für Theoretische PhysikTechnische Universität BerlinBerlin 12Federal Republic of Germany

Personalised recommendations