Zeitschrift für Physik B Condensed Matter

, Volume 84, Issue 3, pp 369–374 | Cite as

Electric and magnetic properties of the first layered conducting titanium and niobium oxides

  • F. Lichtenberg
  • T. Williams
  • A. Reller
  • D. Widmer
  • J. G. Bednorz


Three-dimensional titanium and niobium oxides are superconducting at temperatures considerably lower than layered copper oxides. Therefore it seems worthwhile to study layered titanium and niobium oxides. Layered conducting phases, however, were not known until recently, when the study of the LaTiOx system led to the first layered conducting titanium oxides. Single crystals of isostructural niobium oxides, CaNbOx, SrNbOx and Sr0.9La0.1NbO3.4, were prepared with the floating zone melting technique. In common with LaTiOx they have the following properties. For x≅3.4, its layered perovskite-related structure of a known type is derived from the layered highest-T c (>1600 K) ferroelectrics LaTiO3.5, CaNbO3.5 and SrNbO3.5. In the range 3.42 <x<3.50 well ordered intergrowth takes place between the ferroelectricx=3.5 structure and thex=3.4 structure. This intergrowth was found to be representative of the bulk and the stacking sequence is dependent onx. Forx<3.5, magnetic and resistivity measurements were performed between room temperature and 4.2 K. The temperature dependence of the magnetic susceptibility along the layers displays a minimum. Semiconducting behavior was found along and perpendicular to the layers. At low temperatures the resistivity exhibits thermally activated behavior with unexpectedly small activation energies in the meV range. This might indicate that a further lowering of the average titanium and niobium valencies could lead to metallic behavior.


Titanium Magnetic Susceptibility Niobium Copper Oxide Layered Conducting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bednorz, J.G., Müller, K.A.: Z. Phys. B—Condensed Matter64, 189 (1986)Google Scholar
  2. 2.
    Frederikse, H.P.R., Thurber, W.R., Hosler, W.R.: Phys. Rev.134, A442 (1964); Koonce, C.S., Cohen, M.L., Schoonley, J.F., Hosler, W.R., Pfeiffer, E.F.: Phys. Rev.163, 380 (1967)Google Scholar
  3. 3.
    Reed, T.B., Banus, M.D., Sjoestrand, M., Keesom, P.H.: J. Appl. Phys.43, 2478 (1972)Google Scholar
  4. 4.
    Hulm, J.K., Walker, M.S., Pessall, N.: Physica55, 60 (1971)Google Scholar
  5. 5.
    Johnston, D.C., Prakash, H., Zachariasen, W.H., Viswanathan, R.: Mater. Res. Bull.8, 777 (1973)Google Scholar
  6. 6.
    Parkin, S.S.P., Lee, V.Y., Engler, E.M., Nazzal, A.I., Huang, T.C., Gorman, G., Savoy, R., Beyers, R.: Phys. Rev. Lett.60, 2539 (1988)Google Scholar
  7. 7.
    Cava, R.J., Batlogg, B., Espinosa, G.P., Raminez, A.P., Krajewski, J.J., Peck Jr, W.F., Rupp Jr, L.W., Cooper, A.S.: Nature339, 291 (1989)Google Scholar
  8. 8.
    Sleight, W.A., Gilson, J.L., Bierstedt, P.E.: Solid State Commun.17, 27 (1975)Google Scholar
  9. 9.
    Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R.C., Rupp Jr, L.W., White A.E., Short, K.T., Peck Jr, W.F., Kometani, T.Y.: Nature332, 814 (1988)Google Scholar
  10. 10.
    Andersson, S., Wadsley, A.D.: Acta Chem. Scand.15, 14 (1961)Google Scholar
  11. 11.
    Andersson, S., Wadsley, A.D.: Acta Crystallogr.15, 1245 (1961)Google Scholar
  12. 12.
    Ruddlesden, S.N., Popper, P.: Acta Crystallogr.10, 538 (1957)Google Scholar
  13. 13.
    Ruddlesden, S.N., Popper, P.: Acta Crystallogr.11, 54 (1958)Google Scholar
  14. 14.
    Nanamatsu, S., Masakazu, K., Kawamura, T.: J. Phys. Soc. Jpn.38, 817 (1975)Google Scholar
  15. 15.
    Nanamatsu, S., Kimura, M., Doi, K., Matsushita, S., Yamada, N.: Ferroel.8, 511 (1974); Schmalle, H., Williams, T., Reller, A., Bednorz, J.G.: Acta Crystallogr. (submitted for publication)Google Scholar
  16. 16a.
    Nanamatus, S., Kimura, M.: J. Phys. Soc. Jpn.36, 1495 (1974);Google Scholar
  17. 16b.
    Brixner, L.H., Babock, K.: Mater. Res. Bull.3, 817 (1968)Google Scholar
  18. 17.
    Lichtenberg, F., Widmer, D., Bednorz, J.G., Williams, T., Reller, A.: Z. Phys. B—Condensed Matter82, 211 (1991)Google Scholar
  19. 18.
    Williams, T., Schmalle, H., Reller, A., Lichtenberg, F., Widmer, D., Bednorz, J.G.: J. Solid State Chem. (in press)Google Scholar
  20. 19.
    Williams, T., Lichtenberg, F., Reller, A., Widmer, D., Bednorz, J.G.: (In preparation)Google Scholar
  21. 20.
    Portier, R., Fayard, M., Carpy, A., Galy, J.: Mat. Res. Bull.9, 371 (1974)Google Scholar
  22. 21.
    Hervieu, M., Studer, F., Raveau, B.: J. Solid State Chem.22, 273 (1977)Google Scholar
  23. 22.
    Perloff, D.S., Vlasse, M., Wold, A.: J. Phys. Chem. Solids30, 1071 (1969)Google Scholar
  24. 23.
    Fogle, W., Perlstein, J.H.: Phys. Rev.6, B1402 (1972)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. Lichtenberg
    • 1
  • T. Williams
    • 2
  • A. Reller
    • 3
  • D. Widmer
    • 1
  • J. G. Bednorz
    • 1
  1. 1.Zurich Research LaboratoryIBM Research DivisionRüschlikonSwitzerland
  2. 2.CSIRO Division of Materials Science and TechnologyClaytonAustralia
  3. 3.Institute of Inorganic ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations