Zeitschrift für Physik B Condensed Matter

, Volume 47, Issue 4, pp 365–374 | Cite as

On phase transitions in Schlögl's second model

  • P. Grassberger


We study Schlögl's second model, characterized by chemical reactions
$$\begin{array}{*{20}c} {2X\underset{{k_2 }}{\overset{{k_1 }}{\longleftrightarrow}}3X,} & {X\underset{{k_4 }}{\overset{{k_3 }}{\longleftrightarrow}}0,} \\ \end{array} $$
ind-dimensional space. The reactions are assumed to be local; local fluctuations are fully taken into account, and particle transport occurs via diffusion.

In contrast to previous investigations, we find no phase transition whenk4≠0 andd<4. Fork4=0,k3≠0, and 1≦d<4, we find a second-order phase transition which is in the same universality class as the transition in Schlögl's first model. Only ford≧4 we do find the first-order transition found also by previous authors.

These claims are supported by extensive Monte Carlo calculations for various realizations of this process on discrete space-time lattices.


Spectroscopy Neural Network Phase Transition State Physics Complex System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haken, H.: Synergetics, 2nd edn. Berlin, Heidelberg, New York: Springer-Verlag 1979Google Scholar
  2. 2.
    Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. New York: Wiley 1977Google Scholar
  3. 3.
    Schlögl, F.: Z. Phys.253, 147 (1972)Google Scholar
  4. 4.
    McNeil, K.J., Walls, D.F.: J. Stat. Phys.10, 439 (1974)Google Scholar
  5. 4a.
    Janssen, H.K.: Z. Phys.270, 67 (1974)Google Scholar
  6. 4b.
    Matheson, I., Walls, D.F., Gardiner, C.N.: J. Stat. Phys.12, 21 (1975)Google Scholar
  7. 4c.
    Jähnig, F., Richter, P.H.: J. Chem. Phys.64, 4645 (1976)Google Scholar
  8. 4d.
    Nicolis, G., Turner, J.W.: Physica89 A, 326 (1977)Google Scholar
  9. 5.
    Gardiner, C.W., McNeil, K.J., Walls, D.F., Matheson, I.S.: J. Stat. Phys.14, 307 (1976)Google Scholar
  10. 6.
    Grassberger, P., Scheunert, M.: Fortschr. Phys.28, 547 (1980)Google Scholar
  11. 7.
    Moshe, M.: Phys. Rep. C37, 255 (1978)Google Scholar
  12. 8.
    Grassberger, P., Sundermeyer, K.: Phys. Lett. B77, 220 (1978)Google Scholar
  13. 9.
    Broadbent, S.R., Hammersley, J.M.: Camb. Philos. Soc.53, 629 (1957)Google Scholar
  14. 10.
    Cardy, J.L., Sugar, R.L.: J. Phys. A13, L423 (1980)Google Scholar
  15. 11.
    Harris, T.E.: Ann. Prob.2, 969 (1974)Google Scholar
  16. 11a.
    Griffeath, D.: Additive and cancellative interacting particle systems. Springer Lecture Notes in Mathematics. Vol.724. Berlin, Heidelberg, New York: Springer-Verlag 1979Google Scholar
  17. 12.
    Amati, D., Ciafaloni, M., Le Bellac, M., Marchesini, G.: Nucl. Phys. B112, 107 (1976);Google Scholar
  18. 12a.
    Brower, R.C., Furman, M.A., Subbarao, K.: Phys. Rev. D15, 1756 (1977)Google Scholar
  19. 13.
    Grassberger, P., de la Torre, A.: Ann. Phys. (N.Y.)122, 373 (1979)Google Scholar
  20. 14.
    Abarbanel, H.D.I., Bronzan, J.B.: Phys. Rev. D9, 2397 (1974)Google Scholar
  21. 15.
    Brower, R.C., Furman, M.A., Moshe, M.: Phys. Lett.76B, 213 (1978)Google Scholar
  22. 16.
    Kinzel, W., Yeomans, J.M.: J. Phys. A14, L163 (1981)Google Scholar
  23. 16a.
    Domany, E., Kinzel, W.: Weizmann Institute preprint (1981)Google Scholar
  24. 17.
    Janssen, H.K.: Z. Phys. B — Condensed Matter42, 151 (1981)Google Scholar
  25. 18.
    Dewel, G., Walgraef, D., Borckmans, P.: Z. Phys. B — Condensed Matter28, 235 (1977); J. Stat. Phys.24, 119 (1981); Adv. Chem. Phys.49, 311 (1982)Google Scholar
  26. 19a.
    Brachet, M.E., Tirapegui, E.: Phys. Lett.81 A, 211 (1981);Google Scholar
  27. 19b.
    Langouche, F., Roekaerts, D., Tirapegui, E.: Leuven preprints KUL-TF-80/27 (1980) and-81/3 (1981)Google Scholar
  28. 20.
    Malek-Mansour, M., Broeck, C. van den, Nicolis, G., Turner, J.W.: Univ. Libre des Bruxelles preprint (1980)Google Scholar
  29. 20a.
    Nicolis, G., Malek-Mansour, M.: J. Stat. Phys.22, 495 (1980)Google Scholar
  30. 21.
    Hanusse, P., Blanché, A.: In. Systems far from equilibrium. Sitges proceedings. Garrido, L. (ed.). Lecture Notes in Physics. Vol. 132, p. 335. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  31. 21a.
    Hanusse, P.: In: Nonlinear phenomena in chemical dynamics. Bordeaux proceedings. Vidal, C., Pacault, A. (eds.). Berlin, Heidelberg, New York: Springer 1981Google Scholar
  32. 22.
    Doi, M.: J. Phys. A9, 1465, 1479 (1976)Google Scholar
  33. 23.
    Nicolis, G., Turner, J.W.: In: Bifurcation theory and applications in scientific disciplines. Ann. NY Acad. Sci.316, 251 (1979)Google Scholar
  34. 24.
    Malek-Mansour, M., Nicolis, G.: J. Stat. Phys.13, 197 (1975)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. Grassberger
    • 1
  1. 1.Physik Department der UniversitätWuppertalFederal Republic of Germany

Personalised recommendations