Zeitschrift für Physik B Condensed Matter

, Volume 47, Issue 4, pp 285–291 | Cite as

Impact ionization induced negative far-infrared photoconductivity inn-GaAs

  • E. Schöll
  • W. Heisel
  • W. Prettl


Far-infrared photoconductivity ofn-GaAs epitaxial layers showing impact ionization breakdown has been investigated by molecular lasers at photon energies below the 1s-2p shallow donor transition energy. Negative photoconductivity was observed if a magnetic field was applied to the crystals and if impact ionization of donors by the electric bias field was the dominant electron excitation mechanism. The experimental results are qualitatively explained on the basis of the generation-recombination kinetics of electrons bound to donors. Negative photoconductivity is attributed to optically induced free to bound transitions of electrons from theN=0 Landau band to donor levels shifted by the magnetic field above the low energy edge of the conduction band.


Magnetic Field Epitaxial Layer Electron Excitation Impact Ionization Donor Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koenig, S.H.: Phys. Rev.110, 986 (1958)Google Scholar
  2. 2.
    Oliver, P.I.: Phys. Rev.127, 1045 (1962)Google Scholar
  3. 3.
    Crandall, R.S.: Phys. Rev. B.1, 730 (1970)Google Scholar
  4. 4.
    Khosla, R.P., Fischer, J.R., Burkey, B.C.: Phys. Rev. B.7, 2551 (1973)Google Scholar
  5. 5.
    McWhorter, A.L., Rediker, R.H.: Proc. IEEE47, 1207 (1959)Google Scholar
  6. 6.
    Schöll, E.: Int. Conf. Hot Carriers in Semiconductors, Montpellier, J. Physique C3, 57 (1981)Google Scholar
  7. 7.
    Crandall, R.S.: Phys. Lett. A.32, 479 (1970)Google Scholar
  8. 8.
    Heisel, W., Böhm, W., Prettl, W.: Int. J. Infrared Millimeter Waves2, 829 (1981)Google Scholar
  9. 9.
    Larsen, D.M.: Phys. Rev. B8, 535 (1973)Google Scholar
  10. 10.
    Stillman, G.E., Wolfe, C.M., Dimmock, J.O.: In: Semiconductors and semimetals. Willardson, R.K., Beer, A.C. (eds.) Vol.12, p. 169. New York: Academic Press 1977Google Scholar
  11. 11.
    Stillman, G.E., Larsen, D.M., Wolfe, C.M., Brand, R.C.: Solid State Commun.9, 2245 (1971)Google Scholar
  12. 12.
    Gershenzon, E.M., Gol'tsman, G.N., Elat'ev, A.I.: Sov. Phys. JETP45, 555 (1977)Google Scholar
  13. 13.
    Shockley, W.: Solid State Electron.2, 35 (1961)Google Scholar
  14. 14.
    Poehler, T.O.: Phys. Rev. B4, 1223 (1971)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • E. Schöll
    • 1
  • W. Heisel
    • 2
  • W. Prettl
    • 2
  1. 1.Institut für Theoretische PhysikRheinisch-Westfälische Technische Hochschule AachenAachenFederal Republic of Germany
  2. 2.Institut für Angewandte Physik der UniversitätRegensburgFederal Republic of Germany

Personalised recommendations