Marine Biology

, Volume 108, Issue 3, pp 373–385 | Cite as

Co-occurrence of copepods and dissolved free amino acids in shelf sea waters

  • S. A. Poulet
  • R. Williams
  • D. V. P. Conway
  • C. Videau


The vertical distribution of chlorophylla, copepods, dissolved free amino acid concentration and the fixation of14C by phytoplankton were monitored in the springs of 1983, 1987 and 1988 in the Ushant front region, shelf edge of the Celtic Sea and central Irish Sea, respectively. In each area, two stations characterized by mixed and stratified water conditions were compared. Vertical distributions of amino acids coincided with the distribution of copepods. A positive and significant correlation was found between the abudance of copepods and the concentration of amino acids dissolved in seawater. A negative and significant correlation was found between chlorophylla and the concentration of amino acids. Enrichment of amino acids (≥ 20 to 500 nM l−1 at specific depths) due to aspartic and glutamic acids, glutamine and ornithine, was assumed to reflect copepod feeding activity and faecal production. At these depths, the natural concentration and diversity of amino acids, including aspartic acid, glutamic acid, asparagine, serine, histidine, glutamine, arginine, threonine, glycine, alanine, tyrosine, valine, phenylalanine, ornithine and lysine, were high enough and in the correct proportions for triggering feeding and swimming and swarming behavior of copepods, as well as their remote detection of food at the micro- and meso-scales (1 to 10 m). This accumulation of amino acids also constitutes a potential additional source of organic nitrogen for bacteria and phytoplankton.


Phytoplankton Chlorophylla Glutamic Acid Vertical Distribution Aspartic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Admiraal, W., Peletier, H., Laane, R. W. P. M. (1986). Nitrogen metabolism of marine planktonic diatoms; excretion, assimilation and cellular pools of free amino acids in seven species with different cell size. J. exp. mar. Biol. Ecol. 98: 241–263Google Scholar
  2. Andersson, A., Lee, C., Azam, F., Hagström, A. (1985). Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser. 23: 99–106Google Scholar
  3. Bainbridge, R. (1953). Studies on the relationships of zooplankton and phytoplankton. J. mar. biol. Ass. U.K. 32: 385–447Google Scholar
  4. Berland, B. R., Bonin, D. J., Daumas, R. A., Laborde, P. L., Maestrini, S. Y. (1970). Variations du comportement physiologique de l'algueMonallantus salina (xanthophycée) en culture. Mar. Biol 7: 82–92Google Scholar
  5. Braven, J., Evens, R., Butler, E. I. (1984). Amino acids in sea water. Chemy Ecol. (U.K.) 2: 11–21Google Scholar
  6. Buskey, E. J. (1984). Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol. 79: 165–175Google Scholar
  7. Carlucci, A. F., Craven, D. B., Robertson, K. J., Henrichs, S. M. (1986). Microheterotrophic utilization of dissolved free amino acids in depth profiles of southern California Borderland basin waters. Oceanol. Acta 9: 89–96Google Scholar
  8. Crawford, C. C., Hobbie, J. E., Webb, K. L. (1974). The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563Google Scholar
  9. Coffin, R. B. (1989). Bacterial uptake of dissolved free and dissolved combined amino acids in estuarine waters. Limnol. Oceanogr. 34: 531–542Google Scholar
  10. Dall, W., Smith, D. M. (1987). Changes in protein-bound and free amino acids in the muscle of the tiger prawnPenaeus esculentus during starvation. Mar. Biol. 95: 509–520Google Scholar
  11. Dawson R, Gocke, K. (1978). Heterotrophic activity in comparison to the free amino acid concentration in Baltic Sea water samples. Oceanol. Acta 1: 45–54Google Scholar
  12. DeMott, W. R. (1988). Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol. Oceanogr. 33: 397–408Google Scholar
  13. Dortch, Q. (1982). Effect of growth conditions on accumulation of internal nitrate, amino acids, and protein in three marine diatoms. J. exp. mar. Biol. Ecol 61: 243–264Google Scholar
  14. Flynn, K. J. (1988). Some practical aspects of measurements of dissolved free amino acids in natural waters and within microalgae by the use of HPLC. Chemy Ecol. (U.K.) 3: 269–293Google Scholar
  15. Flynn, K. J. (1990). The determination of nitrogen status in microalgae. Mar. Ecol. Prog. Ser. 61: 297–307Google Scholar
  16. Flynn, K. J., Butler, I. (1986). Nitrogen sources for the growth of marine microalagae: role of dissolved free amino acids. Mar. Ecol. Prog. Ser. 34: 281–304Google Scholar
  17. Flynn, K. J., Syrett, P. J. (1985). Development of the ability to take up L-lysine by the diatomPhaeodactylum tricornutum. Mar. Biol. 89: 317–325Google Scholar
  18. Flynn, K. J., Syrett, P. J. (1986): Characteristics of the uptake system for L-lysine and L-arginine inPhaeodactylum tricornutum. Mar. Biol. 90: 151–158Google Scholar
  19. Fogg, G. E. (1983). The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica mar. 26: 3–14Google Scholar
  20. Fuhrman, J. (1987). Close coupling between release and uptake of dissolved free amino acids in seawater studied by isotope dilution approach. Mar. Ecol. Prog. Ser. 37: 45–52Google Scholar
  21. Fuhrman, I., Bell, T. M. (1985). Biological considerations in the measurement of dissolved free amino acids in seawater and implication for chemical and microbiological studies. Mar. Ecol. Prog. Ser. 25: 13–21Google Scholar
  22. Fuzessery, S. M., Childress, J. J. (1975). Comparative chemosensitivity to amino acids and their role in the feeding activity of bathypelagic and littoral crustaceans. Biol. Bull. mar. biol. Lab., Woods Hole 149: 522–538Google Scholar
  23. Gardner, W. S., Paffenhöfer, G. A. (1982). Nitrogen regeneration by the subtropical marine copepodEucalanus pileatus. J. Plankton Res. 4: 725–734Google Scholar
  24. Gill, C. W., Harris, R. P. (1987). Behavioural responses of the copepodsCalanus helgolandicus andTemora longicornis to dinoflagellate diets. J. mar. biol. Ass. U. K. 67: 785–801Google Scholar
  25. Gill, C. W., Poulet, S. A. (1988). Responses of copepods to dissolved free amino acids. Mar. Ecol. Prog. Ser. 43: 269–276Google Scholar
  26. Hagström, A., Ammerman, J. W., Henrichs, S., Azam, F. (1984). Bacterioplankton growth in seawater: II. Organic matter utilization during steady-state growth in seawater cultures. Mar. Ecol. Prog. Ser. 18: 41–48Google Scholar
  27. Hammer, K. D., Brockmann, U. H., Kattner, G. (1981). Release of dissolved free amino acids during a bloom ofThalassiosira rotula. Kieler Meeresforsch. (Sonderh.) 5: 101–109Google Scholar
  28. Hammer, K. D., Kattner, G. (1986). Dissolved free amino acids in the marine environment: a carbon to nitrogen ratio shift during diatom blooms. Mar. Ecol. Prog. Ser. 31: 35–45Google Scholar
  29. Hamner, P., Hamner, W. M. (1977). Chemosensory tracking of scent trails by the planktonic shrimpAcetes sibogae australis. Science, N.Y. 195: 881–888Google Scholar
  30. Hilmer, T., Bate, G. C. (1989). Filter types, filtration and post-filtration treatment in phytoplankton production studies. J. Plankton Res. 11: 49–63Google Scholar
  31. Huntley, M. E., Barthel, K.-G., Star, J. L. (1983). Particle rejection byCalanus pacificus: discrimination between similarly sized particles. Mar. Biol. 74: 151–160Google Scholar
  32. Ittekkot, V., Deuser, W. G., Degens, E. T. (1984). Seasonality in the fluxes of sugars, amino acids, amino sugars to the deep ocean: Sargasso Sea. Deep-Sea Res. 31: 1057–1069Google Scholar
  33. Jørgensen, N. O. G. (1982). Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Mar. Ecol. Prog. Ser. 8: 145–159Google Scholar
  34. Keller, M. D., Mague, T. H., Badenhausen, M., Glover, H. E. (1982). Seasonal variations in the production and consumption of amino acids by coastal microplankton. Estuar., cstl Shelf Sci. 15: 301–315Google Scholar
  35. Laanbroek, H. J., Verplanke, J. C., de Visscher, P. R. M., de Vuyst R. (1985). Distribution of phyto- and bacterioplankton growth and biomass parameters, dissolved inorganic nutrients and free amino acids during a spring bloom in the Oosterschelde basin, The Netherlands. Mar. Ecol. Prog. Ser. 25: 1–11Google Scholar
  36. Laane, R. W. P. M. (1983). Seasonal distribution of dissolved and particulate amino acids in the Ems-Dollart estuary. Oceanol. Acta 6: 105–109Google Scholar
  37. Lampert, W. (1978). Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834Google Scholar
  38. Lancelot, C. (1983). Factors affecting phytoplankton extracellular release in the southern bight of the North Sea. Mar. Ecol. Prog. Ser. 12: 115–121Google Scholar
  39. Liebezeit, G. (1985). Analysis of amino compounds by high-performance liquid chromatography. A review with emphasis on marine samples. Océanis, Paris 5: 365–533Google Scholar
  40. Lindroth, P., Mopper, K. (1979). High-performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with O-phthaldialdehyde. Analyt. Chem. 51: 1667–1674Google Scholar
  41. Lu, M., Stephens, G. C. (1984). Demonstration of net flux of free amino acids inPhaeodactylum tricornutum using high-performance liquid chromatography. J. Phycol. 20: 584–589Google Scholar
  42. Macko, S. A., Green, E. J. (1982). An investigation of the dissolved free amino acids and their relation to phytoplankton cell density in the Damariscotta River estuary. Estuaries 5: 68–73Google Scholar
  43. Mague, T. H., Friberg, E., Hughes, D. J., Morris, I. (1980). Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25: 262–279Google Scholar
  44. Martin-Jézéquel, V., Poulet, S. A., Harris, R. P., Moal, J., Samain, J. F. (1988). Interspecific and intraspecific composition and variation of free amino acids of marine phytoplankton. Mar. Ecol. Prog. Ser. 44: 303–313Google Scholar
  45. Mopper, K., Lindroth, P. (1982). Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347Google Scholar
  46. Olsen, Y., Varum, K. M., Jensen, A. (1986). Some characteristics of the carbon compounds released byDaphnia. J. Plankton Res. 8: 505–517Google Scholar
  47. Poulet, S. A., Ben Mlih, F., Camus, P., Conway, D. V. P., Coombs, S. H., Martin-Jézéquel, V., Marty, J.-C., Videau, C., Williams, R. (1988). Structures environnementales et conditions trophiques en relation avec la survie et le recrutement des larves de poissons pélagiques. Commission des Communautés Européennes, Bruxelles [Rapp. N° 1, Contrat N° ST2J-0369 (EDB)]Google Scholar
  48. Poulet, S. A., Ben Mlih, F., Claustre, H., Conway, D. V. P., Coombs, S. H., Happette, A.-M., Marty, J. C., Martin-Jézéquel, V., Williams, R. (1989). Structures environnementales et conditions trophiques en relation avec la survie et le recrutement des larves de poissons pélagiques. Commission des Communautés Européennes, Bruxelles [Rapp. N° 2, Contrat N° ST2J-0369 (EDB)]Google Scholar
  49. Poulet, S. A., Harris, R. P., Martin-Jézéquel, V., Moal, J., Samain, J. F. (1986). Free amino acids in copepod faecal pellets. Oceanol. Acta 9: 191–197Google Scholar
  50. Poulet, S. A., Marsot, P. (1980). Chemosensory feeding and foodgathering by omnivorous marine copepods. In: Kerfoot, W. C. (ed.) Evolution and ecology of zooplankton communities. University Press, New England, p. 198–218Google Scholar
  51. Poulet, S. A., Martin-Jézéquel, V. (1983). Relationships between dissolved free amino acids, chemical composition and growth of the marine diatomChaetoceros debile. Mar. Biol. 77: 93–100Google Scholar
  52. Poulet, S. A., Martin-Jézéquel, V. (1984). Analyses des pigments chlorophylliens et des acides aminés associés à la distribution des organismes planctoniques en Manche Occidentale et Mer d'Iroise. Relation phyto-zooplancton: déterminisme de essaims zooplanctoniques. Centre National pour l'Exploration des Océans, Paris (Rapp., Contrat CNEXO N° 82/6573)Google Scholar
  53. Poulet, S. A., Martin-Jézéquel, V., Delmas, D. (1985). Gradient of dissolved free amino acids and phytoplankton in a shallow bay. Hydrobiologia 121: 11–17Google Scholar
  54. Poulet, S. A., Martin-Jézéquel, V., Head, R. N. (1984). Distribution of dissolved free amino acids in the Ushant front region. Mar. Ecol. Prog. Ser. 18: 49–55Google Scholar
  55. Poulet, S. A., Ouellet, G. (1982). The role of amino accids in the chemosensory swarming and feeding of marine copepods. J. Plantkon Res. 4: 341–361Google Scholar
  56. Régnault, M. (1987). Nitrogen excretion in marine and fresh-water Crustacea. Biol. Rev. 62: 1–24Google Scholar
  57. Roy, S., Harris, R. P., Poulet, S. A. (1989). Inefficient feeding byCalanus helgolandicus andTemora longicornis onCoscinodiscus wailesii: quantitative estimation using chlorophyll-type pigments and dissolved amino acids. Mar. Ecol. Prog. Ser. 52: 145–153Google Scholar
  58. Roy, S., Poulet, S. A. (1990). Laboratory study of the chemical composition of aging copepod fecal material. J. exp. mar. Biol. Ecol. 135: 3–18Google Scholar
  59. Steemann Nielsen, E. (1952). Use of radio-active carbon (14C) for measuring organic production in the sea. J. cons. perm. int. Explor. Mer 18: 117–140Google Scholar
  60. Strickland, J. D. H., Parsons, T. R. (1968). A practical handbook of seawater analysis. Bull. Fish. Res Bd Can. 167: 1–311Google Scholar
  61. Van Alstyne, K. L. (1986). Effects of phytoplankton taste and smell on feeding behavior of the copepodCentropages hamatus. Mar. Ecol. Prog. Ser. 34: 187–190Google Scholar
  62. Videau, C. (1988). Primary production and physiological state of phytoplankton at the Ushant tidal front (west coast of Brittany, France). Mar. Ecol. Prog. Ser. 35: 141–151Google Scholar
  63. Williams, R., Briton, D. (1987). Speech recognition as a means of enumeration in the analysis of biological samples. Mar. Biol. 92: 595–598Google Scholar
  64. Williams, R., Collins, N. R., Conway, D. V. P. (1983). The double LHPR system, a high speed micro- and macroplankton sampler. Deep-Sea Res. 30: 331–342Google Scholar
  65. Williams, R., Poulet. S. A. (1986). Relationship between the zooplankton, phytoplankton, particulate matter and dissolved free amino acids in the Celtic Sea. I. Unstratified water conditions. Mar. Biol. 90: 279–284Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. A. Poulet
    • 1
  • R. Williams
    • 2
  • D. V. P. Conway
    • 2
  • C. Videau
    • 3
  1. 1.Station Biologique, CNRSRoscoffFrance
  2. 2.Plymouth Marine LaboratoryPlymouthEngland
  3. 3.Laboratoire de Physiologie VégétaleUniversité de Bretagne OccidentaleBrestFrance

Personalised recommendations