Advertisement

Marine Biology

, Volume 109, Issue 3, pp 417–425 | Cite as

Nutritional and related experiments on laboratory maintenance of three species of symbiont-bearing, large foraminifera

  • J. J. Lee
  • K. Sang
  • B. ter Kuile
  • E. Strauss
  • P. J. Lee
  • W. W. FaberJr.
Article

Abstract

Factors were examined that affect survival and growth of two common species of large foraminifera from the Red Sea,Amphisorus hemprichii Ehrenberg andAmphistegina lobifera Larsen, 1976. The former is host for dinoflagellate and the latter for diatom zooxanthellae. Experimental conditions were modeled on conditions at 25 m during spring at Wadi Taba, Gulf of Elat, Israel, the season and site where the experimental organisms were collected between 1983 and 1988. The two species responded quite differently in nutritional experiments.A. hemprichii grew, on average, 0.270 mm in diameter in 3 mo on a diet ofNitzschia subcommunis Hustedt,Chlorella sp. (clone AT) orCylindrotheca closterium Rabenhorst isolated from their native habitat. Unfed controls did not grow. In contrast, unfed populations ofA. lobifera grew as well or better than those that were fed unialgal diets. Growth of both species was enhanced on particular mixed algal diets. Both species required photosynthetically active symbionts. Even when fed weekly and supplied with nutrients, neither species survived in the dark. All individuals ofA. hemprichii died after 8 wk incubation in the dark;A. lobifera survived longer, but all were dead by 13 wk. The highest growth rate ofA. hemprichii (0.037 mm wk−1) was obtained when they were fed, the medium was enriched, and the medium was changed weekly. All other conditions being the same, growth rate dropped to 0.009 mm wk−1 when the medium was changed every 3 wk. In contrast,A. lobifera grew fastest when the medium was changed every 3 wk. Food or enrichment with nitrate or phosphate did not stimulate growth (0.03 mm wk−1) over that of the controls. Specimens ofMarginopora kudakajimensis Gudmundsson from Japan, another dinoflagellate-bearing species, were also tested. They grew best (0.02 mm wk−1) when cultured in light, in media enriched with nitrate and phosphate changed weekly, and fed. All three species withdrew nitrate and phosphate from the medium in chemostat experiments.

Keywords

Foraminifera Dinoflagellate Chlorella Large Foraminifera Experimental Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arnold, Z. M. (1974). Field and laboratory techniques for the study of living foraminifera. In: Hedley, R. H., Adams, C. G. (eds.)Foraminifera, Vol. 1. Academic Press, London, p. 153–206Google Scholar
  2. Chen, P. S. Jr., Toribara, T. Y., Warner, H. (1956). Microdetermination of phosphorus. Analyt. Chem. 32: 1756–1758Google Scholar
  3. Gudmundsson, G. (1989). Systematics of recent species of the superfamily Soritacea Ehrenberg 1839. Ph.D. dissertation, City University of New York. University Microfilms, Ann ArborGoogle Scholar
  4. Hallock, P. (1979). Trends in test shape in large, symbiont-bearing foraminifera. J. foraml Res. 9: 61–69Google Scholar
  5. Hallock, P. (1980). The application of ecologic studies of living algal symbiont-bearing foraminifera to paleoeologic interpretation (abstract). Bull. Am. Ass. Petrol. Geol. 47: 716–717Google Scholar
  6. Hallock, P. (1981). Light dependence inAmphistegina. J. foraml Res. 11: 40–46Google Scholar
  7. Hallock, P. (1985). Why are large Foraminifera large? Paleobiology 11: 195–208Google Scholar
  8. Hallock, P., Cottey, T. L., Forward, L. B., Halas, J. (1986). Population biology and sediment production ofArchaias angulatus (Foraminiferida) in Largo Sound, Florida. J. foraml Res. 16: 1–18Google Scholar
  9. Hottinger, L. (1977). Distribution of larger Peneroplidae,Borelis and Nummulitidae in the Gulf of Elat, Red Sea. Utrecht micropaleont. Bull. 15: 35–109Google Scholar
  10. Jørgensen, B. B., Erez, J., Revsbech, N. P., Cohen, Y. (1985). Symbiotic photosynthesis in a planktonic foraminifera,Globigerinoides sacculifer (Brady) studied with microelectrodes. Limnol. Oceanogr. 30: 1253–1267Google Scholar
  11. Koestler, R. J., Lee, J. J., Reidy, J., Sheryll, R. P., Xenophonotos, X. (1985). Cytological investigation of digestion and re-establishment of symbiosis in the larger benthic foraminiferaAmphistegina lessonii. Endocytobiol. Cell Res. 2: 21–54Google Scholar
  12. Kuile, B. ter, Erez, J. (1984).In situ growth rate experiments on the foraminiferaAmphistegina lobifera andAmphisorus hemprichii. J. foraml Res. 14: 262–276Google Scholar
  13. Kuile, B. ter, Erez, J., Lee, J. J. (1987). The role of feeding in hte metabolism of larger symbiont-bearing foraminifera. Symbioses 4: 335–350Google Scholar
  14. Larsen, A. R. (1976). Studies of recentAmphisteginga, taxonomy and some ecological aspects. Israel J. Earth-Sciences 25: 1–26Google Scholar
  15. Lee, J. J. (1974). Towards understanding the niche of foraminifera. In: Hedley, R. H., Adams, C. G. (eds.) Foraminifera, Vol. 1. Academic Press, London, p. 208–257Google Scholar
  16. Lee, J. J. (1980). Nutrition and physiology of foraminifera. In: Levandowsky, M., Hutner, S. H. (eds.) Biochemistry and physiology of Protozoa, 2nd edn., Vol. 3. Academic Press, New York, p. 43–66Google Scholar
  17. Lee, J. J., Erez, J., Kuile, B. ter., Lagziel, A., Burgos, S. (1988). Feeding rates of two species of larger foraminifera,Amphistegina lobifera andAmphisorus hemprichii, from the Gulf of Elat (Red Sea). Symbioses 5: 61–102Google Scholar
  18. Lee, J. J., McEnery, M. E., Garrison, J. R. (1980a). Experimental studies of larger foraminifera and their symbionts from the Gulf of Elat on the Red Sea. J. foraml Res. 10: 31–47Google Scholar
  19. Lee, J. J., McEnery, M. E., Kennedy, E., Rubin, H. (1975). A nutritional analysis of a sublittoral epiphytic diatom assemblage onEnteromorpha from a Long Island salt marsh. J. Phycol. 21: 14–49Google Scholar
  20. Lee, J. J., McEnery, M. E., Lee, M. J., Reidy, J. J., Garrison, J. R. Röttger, R. (1980b). Algal symbionts in larger foraminifera. In: Schwemmler, N., Schenk, H. E. A. (eds.) Endocytobiology, Vol. 1. Walter de Gruyter & Co., Berlin, p. 113–124Google Scholar
  21. Leutenegger, S. (1984). Symbiosis in benthic foraminifera: specificity and host adaptations. J. foraml Res. 14: 16–35Google Scholar
  22. Levanon-Spanier, I., Padan, E., Reiss, Z. (1979). Primary production in a desert enclosed sea — the Gulf of Elat (Aqaba), Red Sea. Deep-Sea Res. 26: 673–685Google Scholar
  23. Muller, P. H. (1974). Sediment production and population biology of the benthic foraminiferaAmphistegina madagascariensis. Limnol. Oceanogr. 19: 802–809Google Scholar
  24. Muller, P. H. (1977). Some aspects of the ecology of several larger, symbiont-bearing foraminifera and their contribution to warm, shallow water biofacies. Ph.D. dissertation, University of Hawaii, Honolulu (University Microfilms, Doctoral Dissertation Series, No. 77-23491)Google Scholar
  25. Provasoli, L., McLaughlin, J., Droop, M. (1957). The development of artificial media for marine alge. Arch. Mikrobiol. 25: 302–428Google Scholar
  26. Rand, M. C., Greenberg, A. E., Taras, M. J. (eds.) (1976). Standard methods for the examination of water and wastewater, 14th edn. American Public Health Association, Washington, D.C., p. 429–431Google Scholar
  27. Reiss, Z., Hottinger, L. (1984). The Gulf of Aqaba. Ecological micropaleontology. Springer-Verlag, BerlinGoogle Scholar
  28. Ross, C. A. (1972). Biology and ecology ofMarginopora vertebralis (Foraminifera), Great Barrier Reef. J. Protozool. 19: 181–192Google Scholar
  29. Röttger, R. (1972a). Die Bedeutung der Symbiose vonHeterostegina depressa (Foraminifera, Nummulitidae) für hohe Siedlungsdichte und Karbonatproduktion. Verh. dt. zool. Ges. 65: 289–292Google Scholar
  30. Röttger, R. (1972b). Die Kultur vonHeterostegina depressa (Foraminifera: Nummulitidae). Mar. Biol. 15: 150–159Google Scholar
  31. Röttger, R. (1976). Ecological observations ofHeterostegina depressa (Foraminifera, Nummulitidae) in the laboratory and in its natural habitat. Marit. Sediments (Spec. Publ. 1): 75–80Google Scholar
  32. Röttger, R., Berger, W. H. (1972). Benthic Foraminifera: morphology and growth in clone cultures ofHeterostegina depressa. Mar. Biol. 15: 89–94Google Scholar
  33. Röttger, R., Fladung, M., Schmaljohann, R., Spindler, M., Zacharias, H. (1986). A new hypothesis: the so-called megalospheric schizont of the larger foraminifera,Heterostegina depressa d'Orbigny 1826, in a separate species. J. foraml Res. 16: 141–149Google Scholar
  34. Röttger, R., Irwan, A., Schmaljohann, R., Franzisket, L. (1980). Growth of the symbiont-bearing foraminiferaAmphistegina lobifera andHeterostegina depressa. In: Schwemmler, W., Schenk, H. E. A. (eds.) Endocytobiology, endosymbiosis and cell biology, Vol. 1. Walter de Gruyther, Berlin, p. 125–132Google Scholar
  35. Valiela, I. (1984). Marine ecological processes. Springer-Verlag, New YorkGoogle Scholar
  36. Zohary, T., Reiss, Z., Hottinger, L. (1980). Population dynamics ofAmphisorus hemprichii (foraminifera) in the Gulf of Elat (Aquaba), Red Sea. Ecologae geol. Helv. 73(3): 1071–1094Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. J. Lee
    • 1
  • K. Sang
    • 1
  • B. ter Kuile
    • 2
  • E. Strauss
    • 1
  • P. J. Lee
    • 1
  • W. W. FaberJr.
    • 1
  1. 1.Department of BiologyCity College of New YorkNew YorkUSA
  2. 2.H. Steinitz Marine Biological Laboratory Inter University Institute of ElatElatIsrael

Personalised recommendations