Marine Biology

, Volume 108, Issue 1, pp 157–166 | Cite as

Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure

  • D. Karentz
  • F. S. McEuen
  • M. C. Land
  • W. C. Dunlap


To investigate the natural defenses of Antarctic marine organisms against exposure to ultraviolet (UV) radiation (280 to 320 nm), 57 species (1 fish, 48 invertebrates, and 8 algae) were collected during austral spring 1988 in the vicinity of Palmer Station (Anvers Island, Antarctic Peninsula) and were analyzed for the presence of mycosporine-like amino acids (MAAs), compounds that absorb UV radiation and may provide shielding from these biologically hazardous wavelengths. Nearly 90% of the 57 species examined contained MAAs, and eight specific MAA compounds were identified. Seven of these (palythine, porphyra-334, shinorine, mycosporineglycine, palythene, asterina-330, and palythinol) have been observed previously in marine organisms from temperate and tropical latitudes. A new MAA, mycosporineglycine: valine, was found in the Antarctic fish and in 38 of the invertebrate species examined. This study confirms widespread occurrence of MAAs in Antarctic marine organisms and suggests that these species have some degree of natural biochemical protection from UV exposure.


Valine Antarctic Peninsula Widespread Occurrence Invertebrate Species Acid Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arpin, N., Bouillant, M. L. (1981). Light and mycosporines. In: Turian, G., Hohl, H. R. (eds.) The fungal spore, morphogenetic controls. Proc. 3rd int. fungal Spore Symp., Switzerland. Academic Press, London, p. 453–454Google Scholar
  2. Balch, W. M. and Haxo, F. T. (1984). Spectral properties ofNoctiluca militaris Suriray, a heterotrophic dinoflagellate. J. Plankton Res. 6: 515–525Google Scholar
  3. Caldwell, M. M. (1981). Plant response to solar ultraviolet radiation. Encycl. Pl. Physiol. (New Ser.) 12A: 169–197Google Scholar
  4. Calkins, J. (ed.) (1982). The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New YorkGoogle Scholar
  5. Carreto, J. I., Carignan, M. O., Daleo, G., De Marco, S. G. (1990a). Occurrence of mycosporine-like amino acids in the redtide dinoflagellateAlexandrium-excavatum-UV-photoprotective compounds. J. Plankton Res. 12: 909–921Google Scholar
  6. Carreto, J. I., De Marco, S. G., Lutz, V. A. (1989). UV-absorbing pigments in the dinoflagellatesAlexandrium excavatum andProrocentrum micans. Effects of light intensity. In: Okaichi, T. Anderson, D. M., Nemoto, T. (eds.) Red tides biology, environmental science, and toxicology. Elsevier, New York, p. 333–336Google Scholar
  7. Carreto, J. I., Lutz, V. A., De Marco, S. G., Carignan, M. O. (1990b). Fluence and wavelength dependence of mycosporine amino acids synthesis in the dinoflagellateAlexandrium excavatum. In: Graneli, E., Edler, L., Sundström, B., Anderson, D. M. (eds.) Toxic marine phytoplankton. Elsevier, New York, p. 275–279Google Scholar
  8. Chalker, B. E., Dunlap, W. C. (1982). Extraction and quantitation of endosymbiotic algal pigments from reef-building corals. Proc. 4th int. coral Reef Symp. 2: 45–50Google Scholar
  9. Chioccara, F., Della Gala, A., de Rosa, M., Novellino, E., Prota, G. (1980). Mycosporine aminoacids and related compounds from the eggs of fishes. Bull. Soc. chim. Belg. 89: 1101–1106Google Scholar
  10. Cloud, P. E. (1968). Atmospheric and hydrospheric evolution of primitive earth. Science, Wash., D.C. 160: 729–736Google Scholar
  11. Dunlap, W. C., Chalker, B. E. (1986). Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5: 1–5Google Scholar
  12. Dunlap, W. C., Chalker, B. E., Bandaranayake, W. M. (1988). New sunscreening agents derived from tropical marine organisms of the Great Barrier Reef, Australia, Proc. 6th int. coral Reef Symp. [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville] 3: 89–93Google Scholar
  13. Dunlap, W. C., Chalker, B. E., Oliver, J. K. (1986). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J. exp. mar. Biol. Ecol. 104: 1–10Google Scholar
  14. Dunlap, W. C., Williams, D. McB., Chalker, B. E., Banaszak, A. (1989). Biochemical photoadaptation in vision: UV-absorbing pigments in fish eye tissues. Comp. Biochem. Physiol. 93B: 601–607Google Scholar
  15. Favre-Bonvin, J., Arpin, N., Brevard, C. (1976). Structure de la mycosporine (P310). Can. J. Chem. 54: 1105–1113Google Scholar
  16. Fischer, A. G. (1965). Fossils, early life, and atmospheric history. Proc. Natn. Acad. Sci. U.S.A. 53: 1205–1215Google Scholar
  17. Gardner, W. S., Miller, W. (1980). Reverse phase liquid chromatographic analysis of amino acids after reaction witho-phtaladehyde. Analyt. Biochem. 101: 61–65Google Scholar
  18. Harm, W. (1980). Biological effects of ultraviolet radiation. Cambridge University Press, CambridgeGoogle Scholar
  19. Haxo, F. T., Lewin, R. A., Lee, K. W., Li, M.-R. (1987). Fine structure and pigments ofOscillatoria (Trichodesmium) aff.thiebautii (Cyanophyta) in culture. Phycologia 26: 443–456Google Scholar
  20. Ito, S., Hirata, Y. (1977). Isolation and structure of a mycosporine from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 28: 2429–2430Google Scholar
  21. Jerlov, N. G. (1950). Ultra-violet radiation in the sea. Nature, Lond. 116: 111–112Google Scholar
  22. Jerlov, N. G. (1976). Marine optics. Elsevier, New YorkGoogle Scholar
  23. Karentz, D. (1990). Ecological considerations of the Antarctic ozone hole in the marine environment. In: Blough, N.V., Zepp, R. G. (eds.) Effects of solar ultraviolet radiation on biogeochemical dynamics in aquatic environments. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI-90-09, Woods Hole, Massachusetts, p. 137–140Google Scholar
  24. Karentz, D. (1991). Ecological considerations of Antarctic ozone depletion. Antarctic Sci. 3(1): 3–11Google Scholar
  25. Karentz, D., Lutze, L. H. (1990). Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol Oceanogr. 35: 549–561Google Scholar
  26. Krueger, A. J., Penn, L. M., Larko, D. E., Doiron, S. D., Guimaraes, P. T. (1989). 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas. NASA Ref. Pub. No. 1225. National Aeronautics and Space Administration, Washington, D.C.Google Scholar
  27. Lubin, D., Frederick, J. E., Booth, C. R., Lucas, T., Neuschuler, D. (1989). Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica. Geophys. Res. Lett. 16: 783–785Google Scholar
  28. Margulis, L. (1981). Symbiosis in evolution. W. H. Freeman, San FranciscoGoogle Scholar
  29. Nakamura, H., Kobayashi, J., Hirata, Y. (1981). Isolation of a 330 nm UV-absorbing substance, asterina-330 from the starfishAsterina pectinifera. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1981: 1413–1414Google Scholar
  30. Nakamura, H., Kobayashi, J., Hirata, Y. (1982). Separation of mycosporine-like amino acids in marine organisms using reversedphased high performance liquid chromatography. J. Chromat. 250: 113–118Google Scholar
  31. Plack, P. A., Fraser, N. W., Grant, P. T., Middleton, C., Mitchell, A. I., Thomson, R. H. (1981). Gadusol, an enolic derivative of cyclohexane-1,3-dione present in the roes of cod and other marine fish. Biochem. J. 199: 741–747Google Scholar
  32. Shibata, K. (1969). Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Pl. Cell Physiol., Tokyo 10: 325–335Google Scholar
  33. Sivalingham, P. M., Ikawa, T., Nisizawa, K. (1974a). Possible physiological roles of a substance showing characteristic UV-absorbing patterns in some marine algae. Pl. Cell Physiol., Tokyo 15: 583–586Google Scholar
  34. Sivalingham, P. M., Ikawa, T., Nisizawa, K. (1976). Physiological roles of a substance 334 in algae. Botanica mar. 19: 9–21Google Scholar
  35. Sivalingham, P. M., Ikawa, T., Yokohama, Y., Nisizawa, K. (1974b). Distribution of a 334 UV-absorbing-substance in algae, with special regard of its possible physiological roles. Botanica mar. 17: 23–29Google Scholar
  36. Smith, R. C., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose rate in natural waters. Photochem. Photobiol. 29: 311–323Google Scholar
  37. Takano, S., Nakanishi, A., Uemura, D., Hirata, Y. (1979). Isolation and structure of a 334 nm UV-absorbing substance, porphyra-334 from the red algaPorphyra tenera Kjellman. Chemy Lett. (Chem. Soc. Japan, Tokyo) 1979: 419–420Google Scholar
  38. Takano, S., Uemura, D., Hirata, Y. (1978a). Isolation and structure of a new amino acid, palythine, from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 26: 2299–2300Google Scholar
  39. Takano, S., Uemura, D., Hirata, Y. (1978b). Isolation and structure of two new amino acids, palythinol and palythene, from the zoanthidPalythoa tuberculosa. Tetrahedron Lett. 49: 4909–4912Google Scholar
  40. Tevini, M, Teramura, A. H. (1989). UV-B effects on terrestrial plants. Photochem. Photobiol. 50: 479–487Google Scholar
  41. Tsujino, I., Yabe, K., Sekekawa, I. (1980). Isolation and structure of a new amino acid, shinorine, from the red algaeChondrus yendoi Yamada et Mikami. Botanica mar. 23: 65–68Google Scholar
  42. Vernet, M., Neori, A., Haxo, F. T. (1989). Spectral properties and photosynthetic action in red-tide populations ofProrocentrum micans andGonyaulax polyedra. Mar. Biol. 103: 365–371Google Scholar
  43. Voytek, M. A. (1990). Addressing the biological effects of decreased ozone on the Antarctic environment. Ambio 19: 52–61Google Scholar
  44. Yentsch,C. S., Yentsch, C. M. (1982). The attenuation of light by marine phytoplankton with specific reference to the absorption of near-UV radiation. In: Calkins, J. (ed.) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New YorkGoogle Scholar
  45. Yoshida, T., Sivalingham, P. M. (1970). Isolation and characterization of the 337 mµ UV-absorbing substance in red alga,Porphyra yezoensis Ueda. Pl. Cell Physiol., Tokyo 11: 427–434Google Scholar
  46. Zangerl, A. R., Berenbaum, M. R. (1987). Furanocoumarins in wild parsnip: effects of photosynthetically active radiation, ultraviolet light, and nutrients. Ecology 68: 516–520Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • D. Karentz
    • 1
  • F. S. McEuen
    • 2
  • M. C. Land
    • 3
  • W. C. Dunlap
    • 4
  1. 1.Laboratory of Radiobiology and Environmental HealthUniversity of CaliforniaSan FranciscoUSA
  2. 2.Dames & MooreSeattleUSA
  3. 3.Department of Medical PathologyUniversity of CaliforniaDavisUSA
  4. 4.Australian Institute of Marine ScienceTownsville M.C.Australia

Personalised recommendations