Advertisement

Marine Biology

, Volume 108, Issue 1, pp 91–96 | Cite as

Metallothionein induction inMytilus edulis exposed to cadmium

  • M. J. Bebianno
  • W. J. Langston
Article

Abstract

The exposure of mussels,Mytilus edulis, collected from Whitsand Bay, southwest England, in August 1988, to sublethal concentrations of cadmium (400µg l−1) for 65 d resulted in the induction of metallothionein (MT) synthesis in the soft tissues. In cadmium-exposed mussels, metallothionein concentrations, measured by differential pulse polarography, increased by a factor of three, from 2 to 3 mg g−1 to a maximum of 9 mg g−1 after 30 d. No significant changes could be detected in controls. Cadmium accumulated in the soft tissues of mussels correlated significantly with metallothionein concentrations and can be described by the relationship: MT (mg g−1)=0.045 Cd (µg g−1)+3.03 (r=0.803,P<0.001). Gel chromatography of heat-treated cytosolic extracts showed that the accumulated cadmium is bound principally to the newly formed metallothioneins. Copper and zinc were also analysed in the whole soft-tissues and in subcellular fractions of cadmium-exposed mussels. Although copper concentrations were not affected by cadmium-exposure, zinc levels were significantly reduced. The results demonstrate that the induction of metallothioneins inM. edulis is a quantifiable biological response to sublethal levels of cadmium exposure.

Keywords

Copper Zinc Chromatography Soft Tissue Cadmium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bebianno, M. J., Langston, W. J. (1989). Quantification of metallothioneins in marine invertebrates using differential pulse polarography. Port. Electrochim. Acta 7: 59–64Google Scholar
  2. Brdicka, R. (1933). Polarographic studies with dropping mercury katode. Part XXXI. A new test for proteins in the presence of cobalt salts in ammoniacal solutions of ammonium chloride. Colln Czech. chem. Commun. Engl. Edn 5: 112–128Google Scholar
  3. Carpené E., Cattani O., Hakim, G., Serrazanetti, G. P. (1983). Metallothionein from foot and posterior adductor muscle ofMytilus galloprovincialis. Comp. Biochem. Physiol. 74C: 331–336Google Scholar
  4. Engel, D. W., Roesijadi, G. (1987). Metallothioneins: a monitoring tool. In: Vernberg, W., Calabrese, A., Thurberg, F. P., Vernberg, F. J. (eds.) Pollution physiology of estuarine organisms. Academic Press, New York, p. 421–438Google Scholar
  5. Evtushenko, Z. S., Belcheva, N. N., Lukyanova, O. N. (1986). Cadmium accumulation in organs of the scallopMizuhopecten yessoensis. II. Subcellular distribution of metals and metal-binding proteins. Comp. Biochem. Phyiol. 83C: 377–383Google Scholar
  6. Fowler, S. W. (1990). Critical review of selected heavy metals and chlorinated hydrocarbon concentrations in the marine environment. Mar. enivrl Res. 29: 1–64Google Scholar
  7. Frankenne, F., Noël-Lambot, F., Disteche, A. (1980). Isolation and characterisation of metallothioneins from cadmium-loaded musselMytilus edulis. Comp. Biochem. Physiol. 66C: 179–182Google Scholar
  8. Frazier, J. M. (1986). Cadmium-binding proteins in the musselMytilus edulis. Envir. Hlth Perspectives 65: 39–43Google Scholar
  9. Frazier, J. M., George, S. G., Overnell, J., Coombs, T. L., Kagi, J. (1985). Characterisation of two molecular weight classes of cadmium binding proteins from the mussel,Mytilus edulis (L.). Comp. Biochem. Physiol. 80C: 257–262Google Scholar
  10. George, S. G., Carpené, E., Coombs, T. L., Overnell, J., Youngston, A. (1979). Characterization of cadmium-binding proteins from mussels,Mytilus edulis (L.) exposed to cadmium. Biochim. biophys. Acta 580: 225–233Google Scholar
  11. George, S. C., Pirie B. J. S., Calabrese, A., Nelson, D. A. (1986). Biochemical and ultrastructural observations of long-term silver accumulation in the mussel,Mytulis edulis. Mar. envirl Res. 18: 255–265Google Scholar
  12. George, S. C., Viarengo, A. (1985). A model for heavy metal homeostasis and detoxification. In: Vernberg, W., Thurberg, F. P., Calabrese, A., Vernberg, F. J. (eds.) Marine pollution and physiology: recent advances. University of South Carolina Press, Columbia, South Carolina, p. 125–143Google Scholar
  13. Goldberg, E. D., Bowen, V. T., Farrington, J. W., Harvey, G., Martin, J. H., Parker, P. L., Risebrough, R. W., Robertson, W., Schneider, E., Gamble, E. (1978). The mussel watch. Envir. Conserv. 5: 101–126Google Scholar
  14. Harrison, F. L., Lam, J. R., Novacek, J. (1988). Partitioning of metals among metal-binding proteins in the bay mussel,Mytilus edulis. Mar. envirl Res. 24: 167–170Google Scholar
  15. Klaverkamp, J. F., MacDonald, W. A., Duncan, D. A., Wagemann, R. (1984). Metallothionein and acclimation to heavy metals in fish: a review. In: Cairns, V. W., Hodson, P. V., O. Nriagu, J. (eds.) Contaminant effects on fisheries. Wiley Interscience, New York, p. 99–113Google Scholar
  16. Köhler, K., Riisgård, H. U. (1982). Formation of metallothioneins in relation to accumulation of cadmium in the common musselMytilus edulis. Mar. Biol. 66: 53–58Google Scholar
  17. Kojima, Y., Berger, C., Vallee, B. L., Kagi, J. H. R. (1976). Aminoacid sequence of equine renal metallothionein-1B. Proc. natn. Acad. Sci. U.S.A. 73: 3413–3417Google Scholar
  18. Langston, W. J. (1990). Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In: Furness, R. W., Rainbow, P. S. (eds.) Heavy metals in the marine environment. CRC Press Inc. Boca Raton, Florida, p. 101–122Google Scholar
  19. Langston, W. J., Bebianno, M. J., Zhou, M. (1989). A comparison of metal-binding proteins and cadmium metabolism in the marine molluscsLittorina littorea (Gastropoda),Mytilus edulis andMacoma balthica (Bivalvia). Mar. envirl Res. 28: 195–200Google Scholar
  20. Langston, W. J., Zhou, M. (1986). Evaluation of the significance of metal-binding proteins in the gastropodLittorina littorea. Mar. Biol. 92: 505–515Google Scholar
  21. Langston, W. J. Zhou, M. (1987). Cadmium accumulation, distribution and metabolism in the gastropodLittorina littorea: the role of metal-binding proteins. J. mar. biol. Ass. U.K. 67: 585–601Google Scholar
  22. McCarter, J. A., Roch, M. (1983). Hepatic metallothionein and resistance to copper in juvenile coho salmon. Comp. Biochem. Physiol. 74C: 133–137Google Scholar
  23. Noël-Lambot, F. (1976). Distribution of cadmium, zinc and copper in the musselsMytilus edulis. Existence of cadmium-binding proteins similar to metallothioneins. Experientia 32: 324–325Google Scholar
  24. Nolan, C. V., Duke, E. J. (1983a). Cadmium accumulation and toxicity inMytilus edulis: involvement of metallothioneins and heavy molecular weight proteins. Aquat. Toxic. 4: 153–163Google Scholar
  25. Nolan, C. V., Duke, E. J. (1983b). Cadmium-binding proteins inMytilus edulis: relation to mode of administration and significance in tissue retention of cadmium. Chemosphere (U.K.) 12: 65–74Google Scholar
  26. Olafson, R. W., Kearns, A., Sim, R. G. (1979). Heavy metal induction of metallothionein synthesis in the hepatopancreas of the crabScylla serrata. Comp. Biochem. Physiol. 62B: 417–424Google Scholar
  27. Pavičić, J., Skreblin, M., Kregar, I., Tusek-Znidaric, M., Stegnar, P. (1985). Formation of inducible Cd-binding proteins similar to metallothioneins in selected organs and life stages ofMytilus galloprovincialis. Journées Étud. Pollut. mar. Méditerr., Lucerne (C.I.E.S.M.) 7: 699–705Google Scholar
  28. Pavičić, J., Skreblin, M., Raspor, B., Branica, M., Tusek-Znidaric, M., Kregar, I., Stegnar, P. (1987). Metal pollution assessment of the marine environment by determination of metal-binding proteins inMytilus sp. Mar. Chem. 22: 235–248Google Scholar
  29. Roesijadi, G. (1981). The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar. envirl Res. 4: 167–179Google Scholar
  30. Roesijadi, G. (1982). Uptake and incorporation of mercury into mercury-binding proteins of gills ofMytilus edulis as a function of time. Mar. Biol. 66: 151–157Google Scholar
  31. Roesijadi, G. (1986). Mercury-binding proteins from the marine mussel,Mytilus edulis. Envir. Hlth Perspectives 65: 45–48Google Scholar
  32. Roesijadi, G., Calabrese, A., Nelson, D. A. (1982). Mercury-binding proteins ofMytilus edulis. In: Vernberg, W., Calabrese, A., Thurberg, F. P., Vernberg, F. J. (eds.) Physiological mechanisms of marine pollutant toxicity. Academic Press, New York, p. 75–87Google Scholar
  33. Roesijadi, G., Klerks, P. L. (1989). Kinetic analysis of cadmium binding to metallothionein and other intracellular ligands in oyster gills. J. exp. Zool. 251: 1–12Google Scholar
  34. Thompson, J. A. J., Cosson, R. P. (1984). An improved electrochemical method for the quantification of metallothioneins in marine organisms. Mar. envirl Res. 11: 137–152Google Scholar
  35. Viarengo, A. (1989). Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. Rev. aquat. Sciences 1: 295–317Google Scholar
  36. Viarengo, A., Canesi, L., Pertica, M., Mancinelli, G., Orunesu, M., Mazzucotelli, A., Bouquegneau, J. M. (1988). Biochemical characterization of a copper-thionein involved in Cu accumulation in the lysosomes of the digestive gland of mussels exposed to the metal. Mar. envirl Res. 24: 163–166Google Scholar
  37. Viarengo, A., Palmero, S., Zanicchi, G., Capelli, R., Vaissiere, R., Orunesu, M. (1985). Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells ofMytilus galloprovincialis Lam. Mar. envirl Res. 16: 23–36Google Scholar
  38. Viarengo, A., Pertica, M., Mancinelli, G., Palmero, S., Zanicchi, G., Orunesu, M. (1981). Synthesis of Cu-binding proteins in different tissues of mussels exposed to the metal. Mar. Pollut. Bull. 12: 347–350Google Scholar
  39. Viarengo, A., Pertica, M., Mancinelli, G., Zanicchi, G., Orunesu, M. (1980). Rapid induction of copper-binding proteins in the gills of metal exposed mussels. Comp. Biochem. Physiol. 67C: 215–218Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. J. Bebianno
    • 1
  • W. J. Langston
    • 1
  1. 1.Plymouth Marine LaboratoryPlymouthEngland

Personalised recommendations