Marine Biology

, Volume 108, Issue 1, pp 39–48 | Cite as

Variation in Vitamin C content of sprat larvae (Sprattus sprattus) in the Irish Sea

  • A. M. Hapette
  • S. Coombs
  • R. Williams
  • S. A. Poulet
Article

Abstract

Sprat (Sprattus sprattus) eggs and larvae were sampled from plankton and the Irish Sea in 1988 and 1989 and analysed forl-ascorbic acid (Vitamin C) content, which is considered an index of the nutritional well being and thus indicative of the status of the population in relation to environmental (physical and biological) structures. In one month, the Vitamin C content of larvae in different developmental stages decreased from 800 to 300µg g−1 in the youngest larvae (4 to 14 mm) and to 250µg g−1 in the oldest larvae (14 to 28 mm). No significant differences in the Vitamin C content per unit weight were found between larvae collected at four sites located in western stratified waters, central stratified, central mixed and eastern mixed waters. The mean Vitamin C content per larva, as well as mean length and wet weight of larvae were lowest in central mixed and eastern mixed waters in May–June. The estimated increases in Vitamin C, length and weight of individuals in the population of larvae varied significantly from April to June and between western stratified and eastern mixed areas. Highest rates coincided with stratified water conditions and with suitable quantity and quality of food, which seemed to constitute the most favourable environmental conditions for abundance and growth of sprat larvae.

Keywords

Developmental Stage Water Condition Unit Weight Mixed Water Suitable Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aiken, J. (1981). The undulating oceanographic recorder mark 2. J. Plankton Res. 3: 551–560Google Scholar
  2. Alshuth, S. (1988). Daily growth increments on otoliths of laboratory-reared sprat,Sprattus sprattus L., larvae. Meeresforsch. Rep. mar. Res. 32: 23–29 (Ber. dt. wiss. Kommn Meeresforsch.)Google Scholar
  3. Andrews, J. W. (1977). Protein requirements. In: Stickney, R. R., Lovell, R. T. (eds.) Nutrition and feeding of channel catfish. Bull. South. Coop. Ser., 218: 10–13 (Further publication details not available)Google Scholar
  4. Barnes, M. J. (1969). Ascorbic acid and the biosynthesis of collagen and elastin. In: Somogyi, J. C., Kodicek, E. (eds.) Nutritional aspects of the development of bone and connective tissue. S. Karger AG, Basel, Switzerland, p. 86–98Google Scholar
  5. Barnes, M. J. (1975). Function of ascorbic acid in collagen metabolism. Ann. N.Y. Acad. Sci. 258: 264–277Google Scholar
  6. Berman, T., Kimor, B. (1983). A large-scale filtration apparatus for net plankton sampling. J. Plankton Res. 5: 111–116Google Scholar
  7. Beverton, R. J. H., Tungate, D. S. (1967). A multi-purpose plankton sampler. J. Cons. perm. int. Explor. Mer 31: 145–157Google Scholar
  8. Blaxter, J. H., Hunter, J. R. (1982). The biology of clupeoid fishes. Adv. mar. Biol. 20: 1–223Google Scholar
  9. Brander, K. M., Dickson, R. R. (1984). An investigation of the low level of fish production in the Irish Sea. ICES Symposium on Biological Productivity of Continental Shelves in the temperate zone of the North Atlantic (Contrib. No. 15). Rapp. P.-v Réun. Cons- perm. int. Explor. Mer 183: 234–242Google Scholar
  10. Chatterjee, I. B., Majumber, A. K., Nandi, B. K., Subramanian, N. (1975). Synthesis and some major functions of vitamin C in animals. Ann. N.Y. Acad. Sci. 258: 24–47Google Scholar
  11. Coombs, S. H., Fosh, C. A., Keen, M. A. (1985). The buoyancy and vertical distribution of eggs of sprat (Sprattus sprattus) and pilchard (Sardina pilchardus). J. mar. biol. Ass. U.K. 65: 461–474Google Scholar
  12. Cowey, C. B. (1979). Protein and amino acid requirements of finfish. In: Halver, J. E., Tiews, K. (eds.) Finfish nutrition and fishfeed technology, Heenemann, Berlin, p. 3–16Google Scholar
  13. Cowey, C. B., Bell, J. G., Knox, D., Fraser, A., Youngson, A. (1985). Lipids and lipid antioxidant systems in developing eggs of salmon (Salmo salar). Lipids 20: 567–572Google Scholar
  14. Cowey, C. B., Sargent, J. R. (1979). Nutrition. In: Hoar, W. S., Randall, D. J., Brett, J. R. (eds.) Fish physiology. Academic Press, New York, p. 1–69Google Scholar
  15. Dabrowski, K. R. (1986). Ontogenical aspects of nutritional requirements in fish. Comp. Biochem. Physiol. 85A: 639–655Google Scholar
  16. Dabrowski, K. R., Hinterleitner, S., Sturmbauer, C., El-Fiky, N., Wieser, W. (1988). Do carp larvae require vitamin C? Aquaculture, Amsterdam 72: 295–306Google Scholar
  17. Falk-Petersen, S., Sargent, J. R., Fox, C., Falk-Petersen, I.-B., Haug, T., Kjørsvik, E. (1989). Lipids in Atlantic halibut (Hippoglossus hippoglossus) eggs from planktonic samples in Northern Norway. Mar. Biol. 101: 553–556Google Scholar
  18. Halver, J. E. (1972). The role of ascorbic acid in fish disease and tissue repair. Bull. Jap. Soc. scient. Fish. 38: 79–92Google Scholar
  19. Halver, J. E., Smith, R. R., Tolbert, B. M., Baker, E. M. (1975). Utilization of ascrobic acid in fish. Ann. N.Y. Acad. Sci. 258: 81–102Google Scholar
  20. Hapette, A. M., Poulet, S. A. (1989). Application of high-performance liquid chromatography to the determination of ascorbic acid in marine plankton. J. Liquid Chromat 13: 357–370Google Scholar
  21. Hapette, A. M., Poulet, S. A. (1990). Variation of vitamin C in some species of marine plankton. Mar. Ecol. Prog. Ser. 64: 69–79Google Scholar
  22. Helsper, J. P., Kagan, L., Hilby, C. L., Maynard, T. M., Loewus, F. A. (1982).l-ascorbic acid biosynthesis inOchromonas danica. Pl. Physiol. 69: 465–468Google Scholar
  23. Hilton, J. W., Cho, C. Y., Slinger, S. J. (1977). Evaluation of the ascorbic acid status of rainbow trout (Salmo gairdneri). J. Fish. Res. Bd Can. 34: 2207–2210Google Scholar
  24. Last, J. M. (1980). The food of twenty species of fish larvae in the west-central North Sea. Fish. Res. Tech. Rep., Minist. Agric. Fish. Fd, Directorate Fish. Res., Lowestoft, Suffolk 60: 1–44Google Scholar
  25. Lim, C., Lovell, R. T. (1978). Pathology of the vitamin C deficiency syndrome in channel catfish (Ictalurus punctatus). J. Nutr. 108: 1137–1146Google Scholar
  26. Mahajan, C. L., Agrawal, N. K. (1979). Vitamin C deficiency inChanna punctatus Bloch. J. Fish Biol. 15: 613–622Google Scholar
  27. Mahajan, C. L., Agrawal, N. K. (1980). Nutritional requirement of ascorbic acid by Indian major carp,Cirrhina mrigala, during early growth. Aquaculture, Amsterdam 19: 37–48Google Scholar
  28. May, R. L. (1974). Larval mortality in marine fishes and the critical period concept. In: Blaxter, J. H. S. (ed.) The early life history of fish. Springer Verlag, Heidelberg, p. 3–19Google Scholar
  29. Millikin, M. R. (1982). Qualitative and quantitative nutrient requirements of fishes: a review. Fish. Bull. U.S. 80: 655–686Google Scholar
  30. Murai, T., Andrews, J. W., Bauernfeind, J. C. (1978). Use ofl-ascorbic acid, ethocel coated ascorbic acid and ascorbate 2-sulfate in diets for channel catfish,Ictalurus punctatus. J. Nutr. 108: 1761–1766Google Scholar
  31. Page, J. W., Andrews, J. W. (1973). Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr. 103: 1339–1346Google Scholar
  32. Poulet, S. A., Hapette, A. M., Cole, R. B., Tabet, J. C. (1989). Vitamin C in marine copepods. Limnol. Oceanogr. 34: 1325–1331Google Scholar
  33. Rumsey, G. L. (1978). Recent advances in nutrition of salmonids. Salmonid 4: 14–17Google Scholar
  34. Russel, F. S. (1976). The eggs and planktonic stages of British marine fishes. London, Academic PressGoogle Scholar
  35. Sandnes, K., Ulgenes, Y., Braekkan, O. R., Utne, F. (1984). The effect of ascorbic acid supplementation in broodstock feed on reproduction of rainbow trout (Salmo gairdneri). Aquaculture, Amsterdam 43: 167–177Google Scholar
  36. Sato, M., Kondo, T., Yoshinaka, R., Ikeda, S. (1982). Effect of dietary ascorbic acid levels on collagen formation in rainbow trout. Bull. Jap. Soc. scient. Fish. 48: 553–556Google Scholar
  37. Sato, M., Yoshinaka, R., Ikeda, S. (1978). Dietary ascorbic acid requirement of rainbow trout for growth and collagen formation. Bull. Jap. Soc. scient. Fish. 44: 1029–1035Google Scholar
  38. Sato, M., Yoshinaka, R., Kuroshima, R., Morimoto, H., Ikeda, S. (1987). Changes in water soluble vitamin contents and transaminase activity of rainbow trout egg during development. Bull. Jap. Soc. scient. Fish. 53: 795–799Google Scholar
  39. Soliman, A. K., Jauncey, K., Roberts, J. (1986). The effect of varying forms of dietary ascorbic acid on the nutrition of juvenile tilapias (Oreochromis niloticus). Aquaculture, Amsterdam 52: 1–10Google Scholar
  40. Theilacker, G., Dorsey, K. (1980). Larval fish diversity, a summary of laboratory and field research. In: Workshop on the effects of environmental variation on the survival of larval pelagic fishes. Intergovtl oceanogr. Comm Wkshop Rep. 28: 105–142Google Scholar
  41. Thomas, P., Bally, M. B., Neff, J. M. (1985). Influence of some environmental variables on the ascorbic acid status of mullet,Mugil cephalus L., tissues. II. Seasonal fluctuations and biosynthetic ability. J. Fish Biol. 27: 47–57Google Scholar
  42. Tytler, P., Blaxter, J. H. S. (1988). The effects of external salinity on the drinking rates of the larvae of herring, plaice and cod. J. exp. Biol. 138: 1–15Google Scholar
  43. Watanabe, T., Tamiya, T., Oka, A., Hirata, M., Kitajima, C., Fujita, S. (1983). Improvement of dietary value of live foods for fish larvae by feeding them onω 3 highly unsaturated fatty acids and fat-soluble vitamins. Bull. Jap. Soc. scient. Fish. 49: 471–479Google Scholar
  44. Wilson R. P. (1973). Absence of ascorbic acid synthesis in channel catfish,Ictalurus punctatus and blue catfish,Ictalurus fructatus. Comp. Biochem. Physiol. 46B: 635–638Google Scholar
  45. Williams, R., Briton, D. (1986). Speech recognition as a means of enumeration in the analysis of biological samples. Mar. Biol. 92: 595–598Google Scholar
  46. Williams, R., Collins, N. R., Conway, D. V. P. (1983). The double LHPR system, a high speed micro- and macroplankton sampler. Deep-Sea Res. 30: 331–342Google Scholar
  47. Yamamoto, Y., Sato, M., Ikeda, S. (1978). Existence ofl-gulonolactone oxidase in some teleosts. Bull. Jap. Soc. scient. Fish. 44: 775–779Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. M. Hapette
    • 1
  • S. Coombs
    • 2
  • R. Williams
    • 2
  • S. A. Poulet
    • 1
  1. 1.Station Biologique (C.N.R.S., UPR 4601 et Université Paris 6)RoscoffFrance
  2. 2.Plymouth Marine LaboratoryThe Hoe, PlymouthEngland

Personalised recommendations