Marine Biology

, Volume 104, Issue 2, pp 251–257 | Cite as

Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts

  • H. M. Page
  • C. R. Fisher
  • J. J. Childress


The ability of an undescribed deep-sea hydrocarbon-seep mussel which contains endosymbiotic methanotrophic bacteria to clear, ingest, and assimilate radiolabeled bacteria (Vibrio pelagicus andEscherichia coli) and algae (Dunaliella tertiolecta) was compared with that of the bay musselMytilus edulis. The seep mussel, collected in August 1987 from the Louisana Slope in the Gulf of Mexico, was slower to clear bacteria and algae thanM. edulis. The ingestion and assimilation of filtered bacteria and algae was established from the presence of radiolabel in mussel tissues and feces. The seep mussel was somewhat less efficient in assimilating radiolabeled components from bacteria and algae thanM. edulis. The dietary carbon maintenance-requirement of the seep mussel could potentially be met at environmental concentrations of greater than 106 bacteria ml−1. At lower concentrations of particulate organic matter, filter-feeding could be an important source of nitrogen and essential nutrients not supplied by the endosymbionts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anderson, A. E., Childress, J. J., Favuzzi, J. A. (1987). Net uptake of CO2 driven by sulphide and thiosulfate oxidation in the bacterial symbiont-containing clamSolemya reidi. J. exp. Biol. 133: 1–31Google Scholar
  2. Baumann, P., Baumann, L., Mandel, M. (1971). Taxonomy of marine bacteria: the genusBeneckea. J. Bact. 107: 268–294Google Scholar
  3. Bayne, B. L. (1973). Physiological changes inMytilus edulis L. induced by temperature and nutritive stress. J. mar. biol. Ass. U.K. 53: 39–58Google Scholar
  4. Bayne, B. L., Scullard, C. (1977). Rates of nitrogen excretion by species ofMytilus (Bivalvia: Mollusca). J. mar. biol. Ass. U.K. 57: 355–369Google Scholar
  5. Bayne, B. L., Thompson, R. J., Widdows, J. (1976). Physiology. I. In: Bayne, B. L. (ed.) Marine mussels: their ecology and physiology. Cambridge University Press, New York, p. 121–206Google Scholar
  6. Birkbeck, T. H., McHenery, J. G. (1982). Degradation of bacteria byMytilus edulis. Mar. Biol. 72: 7–15Google Scholar
  7. Brooks, J. M., Kennicutt, M. C. II, Fisher, C. R., Macko, S. A., Cole, K., Childress, J. J., Bidigare, R. R., Vetter, R. D. (1987). Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science, N.Y. 238: 1138–1142Google Scholar
  8. Cary, S. C., Fisher, C. R., Felbeck, H. (1988). Mussel growth supported by methane as sole carbon and energy source. Science, N.Y. 240: 78–80Google Scholar
  9. Cavanaugh, C. M. (1985). Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. biol. Soc. Wash. 1985(6): 373–388Google Scholar
  10. Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, M. C. II, Bidigare, R., Anderson, A. E. (1986). A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science, N.Y. 233: 1306–1308Google Scholar
  11. Coughlan, J. (1969). The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2: 356–358Google Scholar
  12. Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements ofPocillopora eydouxi. Coral Reefs 2: 181–186Google Scholar
  13. Dral, A. D. G. (1967). The movements of the latero-frontal cilia and the mechanism of particle retention in the mussel (Mytilus edulis L.). Neth. J. Sea Res. 3: 391–422Google Scholar
  14. Falkowski, P. G., Dubinsky, Z., Muscatine, L., Porter, J. W. (1984). Light and the bioenergetics of a symbiotic coral. BioSci. 34: 265–269Google Scholar
  15. Fiala-Médioni, A., Métivier, C., Herry, A., Le Pennec, M. (1986). Ultrastructure of the gill of the hydrothermal-vent mytilidBathymodiolus sp. Mar. Biol. 92: 65–72Google Scholar
  16. Fisher, C. R. (1990). Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. aquat. Biol. (CRC Press) In pressGoogle Scholar
  17. Fisher, C. R., Childress, J. J. (1986). Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalveSolemya reidi. Mar. Biol. 93: 59–68Google Scholar
  18. Fisher, C. R., Childress, J. J., Oremland, R. S., Bidigare, R. R. (1987). The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96: 59–71Google Scholar
  19. Foster-Smith, R. L. (1975). The effect of concentration of suspension on the filtration rates and pseudofaecal production forMytilus edulis L.,Cerastoderma edule (L.), andVenerupis pullastra (Montagu). J. exp. mar. Biol. Ecol. 17: 1–22Google Scholar
  20. Jones, M. L. (1981).Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science, N.Y. 213: 333–336Google Scholar
  21. Jørgensen, C. B. (1975). On gill function in the mussel,Mytilus edulis L. Ophelia 13: 187–232Google Scholar
  22. Kennicutt, M. C. II, Brooks, J. M., Bidigare, R. R., Fay, R. R., Wade, T. L., McDonald, T. J. (1985). Vent-type taxa in a hydrocarbon seep region on the Louisana slope. Nature, Lond. 317: 351–353Google Scholar
  23. Le Pennec, M., Hily, A. (1984). Anatomie, structure et ultrastructure de la branchie u'un Mytilidae des sites hydrothermaux du Pacifique oriental. Oceanol. Acta 7: 517–523Google Scholar
  24. Le Pennec, M., Prieur, D. (1984). Observations sur la nutrition d'un mytilidae d'un site hydrothermal actif de la dorsale du Pacifique oriental. C.r. hebd. Séanc. Acad. Sci., Paris 298: 493–498Google Scholar
  25. Livingstone, D. R., Widdows, J., Fieth, P. (1979). Aspects of nitrogen metabolism of the common musselMytilus edulis: adaptation to abrupt and fluctuating changes in salinity. Mar. Biol. 53: 41–55Google Scholar
  26. Lucas, M. I., Newell, R. C., Shumway, S. E., Seiderer, L. J., Bally, R. (1987). Particle clearance and yield in relation to bacterioplankton and suspended particulate availability in estuarine and open coast populations of the musselMytilus edulis. Mar. Ecol. Prog. Ser. 36: 215–224Google Scholar
  27. Maniatis, T., Fritsch, E. F., Sambrook, J. (1982). Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  28. McHenery, J. G., Birkbeck, T. H. (1985). Uptake and processing of cultured microorganisms by bivalves. J. exp. mar. Biol. Ecol. 90: 145–163Google Scholar
  29. McLaughlin, J. J. A., Zahl, P. A. (1966). Endozoic algae. In: Henry, S. M. (ed.) Symbiosis. Academic Press, New York, p. 257–297Google Scholar
  30. Møhlenberg, F., Riisgård, H. U. (1978). Efficiency of particle retention in thirteen species of suspension feeding bivalves. Ophelia 17: 239–246Google Scholar
  31. Møhlenberg, F., Riisgård, H. U. (1979). Filtration rate, using a new indirect technique, in thirteen species of suspension-feeding bivalves. Mar. Biol. 54: 143–147Google Scholar
  32. Morton, B. (1983). Feeding and digestion in Bivalvia. In: Wilbur, K. M. (ed.) The Mollusca. Vol. 5. Pt. 2. Academic Press, New York, p. 65–147Google Scholar
  33. Reid, R. G. B. (1968). The distribution of digestive tract enzymes in lamellibranchiate bivalves. Comp. Biochem. Physiol. 24: 417–433Google Scholar
  34. Reid, R. G. B., Brand, D. G. (1986). Sulfide-oxidizing symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29: 3–24Google Scholar
  35. Riisgård, H. U., Randløv, A. (1981). Energy budgets, growth and filtration rates inMytilus edulis at different algal concentrations. Mar. Biol. 61: 227–234Google Scholar
  36. Schweimanns, M., Felbeck, H. (1985). Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Mar. Ecol. Prog. Ser. 24: 113–120Google Scholar
  37. Seiderer, L. J., Newell, R. C. (1985). Relative significance of phytoplankton, bacteria and plant detritus as carbon and nitrogen resources for the kelp bed filter-feederChoromytilus meridionalis. Mar. Ecol. Prog. Ser. 22: 127–139Google Scholar
  38. Southward, E. C. (1982). Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U.K. 62: 889–906Google Scholar
  39. Trench, R. K. (1979). The cell biology of plant-animal symbiosis. A. Rev. Pl. Physiol. 30: 485–531Google Scholar
  40. Vahl, O. (1972). Efficiency of particle retention inMytilus edulis. L. Ophelia 10: 17–25Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • H. M. Page
    • 1
  • C. R. Fisher
    • 1
  • J. J. Childress
    • 1
  1. 1.Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations