Advertisement

Marine Biology

, Volume 104, Issue 2, pp 233–238 | Cite as

Examples of post-mortality alteration in Recent brachiopod shells and (paleo)ecological consequences

  • C. C. Emig
Article

Abstract

Post-mortality alteration of brachiopod shells under normal environmental conditions leads to high taphonomic loss, and to a poor contribution to the biodetrital soft sediment. The successive stages of alteration which shells undergo are: (bio)degradation of the organic matrix → shell softening → structural disaggregation or/and mechanical fragmentation; these processes depend on the shell structure (number of layers) and composition (organic and inorganic components), but very little on environmental conditions, except for the dissolution of inorganic shell constituents. Among the Brachiopoda, three types of alteration occur to different types of shells — Type I: two-layered chitino-phosphatic shell (species ofLingula andGlottidia) displays a rapid degradation of the organic matrix and mechanical abrasion, leading to total disappearance of the shell in 2 to 3 wk; Type II: two-layered carbonate shell, e.g.Terebratulina spp. [but notNotosaria nigricans (Sowerby) which may constitute a fourth shell type], exhibits degradation of the organic matrix of the secondary layer, shell softening, and structural disaggregation leading to shell disintegration in 6 to 7 mo with a concomitant contribution of calcitic microfibres to the sediment; Type III: three-layered carbonate shell, e.g.Gryphus vitreus (Born), undergoes organic degradation of the secondary layer, fragmentation of the anterior two-thirds of the shell, and slow degradation (because of the thick tertiary layer) of the posterior portion of the shell, with dissolution of the inorganic components (mainly in the tertiary layer) which make a relatively minor contribution to the sediment.

Keywords

Organic Matrix Inorganic Component Carbonate Shell Shell Type Mechanical Abrasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alexandersson, E. T. (1979). Marine maceration of the skeletal carbonates in the Skagerrak, North Sea. Sedimentology 26: 845–852Google Scholar
  2. Benigni, C. (1985). Morphologia ed ultrastruttura diGryphus vitreus (Born, 1778) dell'Arcipelago Toscano (Italia). Boll. Mus. reg. Sci. nat. Torino 3: 449–498Google Scholar
  3. Benigni, C. (1987). Shell microstructure of Mediterranean terebratulid from Pliocene to recent and its diagnostic significance. Boll. Mus. reg. Sci. nat. Torino 5: 1–26Google Scholar
  4. Boullier, A., Delance, J. H., Emig, C. C., d'Hondt, J. L., Gaspard, D., Laurin, B. (1986). Les populations deGryphus vitreus (Brachiopoda) en Corse. Implications paléontologiques. Biostratigr. Paléozoïque, Brest 4: 179–196Google Scholar
  5. Caulet, J. P. (1972). Les sédiments organogènes du précontinent algérien. Mém. Mus. natn. Hist. nat., Paris 25 (sér. C): 1–295Google Scholar
  6. Collins, M: J. (1986). Post mortality strength loss in shells of the Recent articulate brachiopodTerebratulina retusa (L.) from the west coast of Scotland. Biostratigr. Paléozoïque, Brest 4: 209–218Google Scholar
  7. Curry, G. B. (1982). Ecology and population structure of the Recent brachiopodTerebratulina from Scotland. Palaeontology 25: 227–246Google Scholar
  8. Emig, C. C. (1981). Observations sur l'écologie deLingula reevei Davidson (Brachiopoda: Inarticulata). J. exp. mar. Biol. Ecol. 52: 47–61Google Scholar
  9. Emig, C. C. (1983). Comportement expérimental deLingula anatina (Brachiopoda: Inarticulata) dans divers substrats meubles (Baie de Mutsu, Japon). Mar. Biol. 75: 207–213Google Scholar
  10. Emig, C. C. (1986). Conditions de fossilisation du genreLingula (Brachiopoda) et implications paléontologiques. Palaeogeogr. Palaeoclim. Palaeoecol. 53: 245–253Google Scholar
  11. Emig, C. C. (1987). Offshore brachiopods investigated by submersible. J. exp. mar. Biol. Ecol. 108: 261–273Google Scholar
  12. Emig, C. C. (1989a). Distribution bathymétrique et spatiale des populations deGryphus vitreus (brachiopode) sur la marge continentale (Nord-Ouest Méditerranée). Oceanol. Acta 12: 205–209Google Scholar
  13. Emig, C. C. (1989b). Distributional patterns along the Mediterranean continental margin (upper bathyal) usingGryphus vitreus (Brachiopoda) densities. Palaeogeogr. Palaeoclim. Palaeoecol. 71: 253–256Google Scholar
  14. Emig, C. C. (1989c) Observations préliminaires sur l'envasement de la biocoenose àGryphus vitreus (Brachiopoda), sur la pente continentale du Nord de la Corse (Méditerranée). Origines et conséquences. C. r. hebd. Séanc. Acad. Sci., Paris (sér. III) 309: 337–342Google Scholar
  15. Emig, C. C. (1989d). Les brachiopodes actuels sont-ils des indicateurs (paléo) bathymétriques? Géol. méditerr., Marseille 15: 65–71Google Scholar
  16. Foster, M. W. (1974). Recent Antarctic and Subantarctic brachiopods. Antarct. Res. Ser. 21: 1–189Google Scholar
  17. Fredj-Reygrobellet, D., Fredj, G. (1982). Etat des recherches sur les populations méditerranéennes deGryphus vitreus (Born) de la limite inférieure du plateau continental. Bull. Soc. zool. Fr. 107: 217–223Google Scholar
  18. Gaspard, D. (1986). Aspects figurés de la biominéralisation unités de base de la sécrétion carbonatée chez les Terebratulida actuels. Biostratigr. Paléozoïque, Brest 4: 77–83Google Scholar
  19. Gaspard, D. (1988). Aperçu de la biodégradation des tests de brachiopodes actuels. Conséquences lors de la fossilisation. Association des Sédimentologistes Français, Marseille Colloque n° 7: BiosédimentologieGoogle Scholar
  20. Iwata, K. (1981). Ultrastructure and mineralization of the shell ofLingula unguis Linné (inarticulate, brachiopod). J. Fac. Sci., Hokkaido Univ. (Ser. 4) 20: 35–65Google Scholar
  21. Iwata, K. (1982). Ultrastructure and calcification of the shells in inarticulate brachiopods. Part 2. Ultrastructure of the shells ofGlottidia andDiscinisca [in Jap.]. J. geol. Soc. Japan 88: 957–966Google Scholar
  22. Jope, H. M. (1965). Composition of brachiopod shells. In: Moore R. C. (ed.) Treatise on invertebrate paleontology. Part H. Brachiopoda. University Kansas Press & Geological Society of America, New York, p. 156–164Google Scholar
  23. Jope, H. M. (1971). Constituents of brachiopod shells. Comp. Biochem. 26C: 749–783Google Scholar
  24. Logan, A., Noble, J. P. A. (1971). A recent shallow-water brachiopod community from the bay of Fundy. Marit. Sediments 7: 85–91Google Scholar
  25. Mackinnon, D. I., Williams, A. (1974). Shell structure of terebratulid brachiopods. Palaeontology 17: 179–202Google Scholar
  26. Mundlos, R. (1978). Terebratulid shell beds. Neues Jb. Geol. Paläont. Abh. 157: 45–47Google Scholar
  27. Noble, J. P. A., Logan, A., Webb, G. R. (1976). The RecentTerebratulina community in the rocky subtidal zone of the bay of Fundy, Canada. Lethaia 9: 1–17Google Scholar
  28. Poulicek, M. (1983). Patterns of mollusk shell biodegradation in bathyal and abyssal sediments. J. mollusc Stud. (Suppl.) 12A: 136–141Google Scholar
  29. Stewart, I. R. (1981). Population structure of articulate brachiopod species from soft and hard substrates. N.Z. Jl Zool. 8: 197–207Google Scholar
  30. Thomson, J. A. (1927). Brachiopod morphology and genera (Recent and Tertiary). N.Z. Bd Sci. Art Man. 7: 1–338Google Scholar
  31. Wanatabe, N., Pan, C.-H. (1984). Phosphatic shell formation in atremate brachiopods. Am. Zool. 24: 977–985Google Scholar
  32. Williams, A. (1968). Evolution of the shell structure of articulate brachiopods. Spec. Pap. Palaeont. 2: 1–55Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. C. Emig
    • 1
  1. 1.Station Marine d'EndoumeCNRS-GDR “Ecoprophyce”MarseilleFrance

Personalised recommendations