Advertisement

Marine Biology

, Volume 104, Issue 1, pp 67–77 | Cite as

Mass mortality ofDiadema antillarum

I. Long-term effects on sea urchin population-dynamics and coral reef algal communities
  • R. C. Carpenter
Article

Abstract

The mass mortality of the echinoidDiadema antillarum Philippi in 1983/1984 resulted in dramatic changes in the benthic algal community. This study reports data on the population densities of sea urchins prior to and following the mass mortality and data on the biomass, species composition, and rates of primary productivity of algal communities at several study sites in St. Croix, U.S. Virgin Islands. The mass mortality reducedD. antillarum population densities by 95 to 99%. Population densities were reduced further by a second, less severe mortality event in October 1985. Over a period of 2 yr, recruitment ofD. antillarum larvae to the study sites was low and population densities remained at 2 to 30% of their premortality levels. The effects of the mass mortality on the algal community were significant. Algal biomass increased by 22 to 439% across reef zones 16 mo after the die-off. Rates of primary productivity per unit biomass (chlorophylla) remained at approximately 60% of premortality levels in shallow-reef habitats for 25 mo following the die-off. The magnitude of the response of the algal community was positively correlated with the previous population densities ofD. antillarum. The species composition of the algal community also shifted dramatically. Prior to the mass mortality, algal communities were dominated by algal turfs and crustose algae, and macroalgae were either rare or absent. Twenty-five months after the mass mortality, algal turfs covered 40% of the area and macroalgae covered 47%. Many of the macroalgal species are not consumed by herbivores and much of the algae is dislodged by storm waves and is exported from the reef. This represents a transition from a community dominated by a grazing-based food web to one where the majority of primary production may be exported to adjacent communities.

Keywords

Biomass Population Density Chlorophylla Macroalgae Algal Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adey, W. H. (1978). Coral reef morphogenesis: a multidimensional model. Science, N.Y. 202: 831–837Google Scholar
  2. Adey, W. H., Steneck, R. S. (1985). Highly productive eastern Caribbean reefs: synergistic effects of biological, physical and geological factors. In: Reaka M. L. (ed.) The ecology of coral reefs. National Oceanic and Atmospheric Administration, Rockville Maryland p. 163–187Google Scholar
  3. Bak, R. P. M. (1985). Recruitment patterns and mass mortalities in the sea urchinDiadema antillarum. Proc. 5th int. coral Reef Congress, Tahiti 5: 267–272 [Gabrié, C., et al. (eds.) Antenne Museum — EPHE, Moorea, French Polynesia]Google Scholar
  4. Bak, R. P. M., Carpay, M. J. E., de Ruyter van Steveninck, E. D. (1984). Densities of the sea urchinDiadema antillarum before and after mass mortalities on the coral reefs of Curacao. Mar. Ecol. Prog. Ser. 17: 105–108Google Scholar
  5. Bauer, J. C. (1980). Observations on geographical variations in population density of the echinoidDiadema antillarum within the western North Atlantic. Bull. mar. Sci. 30: 509–515Google Scholar
  6. Breen, P. A., Mann, K. H. (1976). Changing lobster abundance and the destruction of kelp beds by sea urchins. Mar. Biol. 34: 137–142Google Scholar
  7. Carpenter, R. C. (1981). Grazing byDiadema antillarum (Philippi) [sic] and its effects on the benthic algal community. J. mar. Res. 39: 749–765Google Scholar
  8. Carpenter, R. C. (1985a). Sea urchin mass mortality: effects on reef algal abundance, species composition, and metabolism and other reef herbivores. Proc. 5th int. coral Reef Congr. 4: 53–60 [Gabrié, C., et al. (eds.) Antenne Museum — EPHE, Moorea, French Polynesia]Google Scholar
  9. Carpenter, R. C. (1985b). Relationships between primary production and irradiance in coral reef algal communities. Limnol. Oceanogr. 30: 784–793Google Scholar
  10. Carpenter, R. C. (1986). Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56: 345–363Google Scholar
  11. Carpenter, R. C. (1988). Mass mortality of a Caribbean echinoid: immediate effects on community metabolism and other herbivores. Proc. natn. Acad. Sci. U.S.A. 85: 511–514Google Scholar
  12. Carpenter, R. C. (1990). Mass mortality ofDiadema antillarum. II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104: 79–86Google Scholar
  13. Chapman, A. R. O. (1981). Stability of sea urchin dominated barren grounds following destructive grazing of kelp in St. Margaret's Bay, Eastern Canada. Mar. Biol. 62: 307–311Google Scholar
  14. Clark, H. L. (1933). A handbook of the littoral echinoderms of Porto Rico and other West Indian islands. Scientific Survey of Porto Rico and the Virgin Islands. Vol. XVI. New York Academy of Sciences, New YorkGoogle Scholar
  15. Dean, T. A., Schroeter, S. C., Dixon, J. D. (1984). Effects of grazing by two species of sea urchins (Strongylocentrotus franciscanus andLytechinus anamesus) on recruitment and survival of two species of kelp (Macrocystis pyrifera andPterygophora californica). Mar. Biol. 78: 301–313Google Scholar
  16. Duggins, D. O. (1980). Kelp beds and sea otters: an experimental approach. Ecology 61: 447–453Google Scholar
  17. Estes, J. A., Palmisano, J. F. (1974). Sea otters: their role in structuring nearshore communities. Science, N.Y. 18: 1058–1060Google Scholar
  18. Estes, J. A., Smith, N. S., Palmisano, J. F. (1978). Sea otter predation and community organization in the western Aleutian Islands, Alaska. Ecology 59: 822–833Google Scholar
  19. Foster, S. A. (1987). The relative impacts of grazing by Caribbean coral reef fishes andDiadema: effects of habitat and surge. J. exp. mar. Biol. Ecol. 105: 1–20Google Scholar
  20. Gladfelter, W. B. (1982). White-band disease inAcropora palmata: implications for the structure and growth of shallow reefs. Bull. mar. Sci. 32: 639–643Google Scholar
  21. Hackney, J. M., Carpenter, R. C., Adey, W. H. (1989). Characteristic adaptations to grazing among algal turfs on a Caribbean coral reef. Phycologia 28: 109–119Google Scholar
  22. Hatcher, B. G. (1981). The interaction between grazing organisms and the epilithic algal community of a coral reef: a quantitative assessment. Proc. 4th int. coral Reef Symp. 2: 515–524 [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]Google Scholar
  23. Hay, M. E. (1984). Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65: 446–454Google Scholar
  24. Hay, M. E., Fenical, W., Gustafson, K. (1987). Chemical defense against diverse coral-reef herbivores. Ecology 68: 1581–1591Google Scholar
  25. Hay, M. E., Paul, V. J., Lewis, S. M., Gustafson, K., Tucker, J., Trindell, R. (1988). Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia 75: 233–245Google Scholar
  26. Hughes, T. P. (1989). Community structure and diversity of coral reefs: the role of history. Ecology 70: 275–279Google Scholar
  27. Hughes, T. P., Keller, B. D., Jackson, J. B. C., Boyle, M. J. (1985). Mass mortality of the echinoidDiadema antillarum Philippi in Jamaica. Bull. mar. Sci. 36: 377–384Google Scholar
  28. Hughes, T. P., Reed, D. C., Boyle, M. J. (1987). Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J. exp. mar. Biol. Ecol. 113: 39–59Google Scholar
  29. Hunte, W., Cote, I., Tomascik, T. (1986). On the dynamics of the mass mortality ofDiadema antillarum in Barbados. Coral Reefs 4: 135–139Google Scholar
  30. Hunte, W., Younglao, D. (1988). Recruitment and population recovery in the black sea urchinDiadema antillarum (Echinodermata: Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45: 109–119Google Scholar
  31. Jackson, J. B. C., Kaufman, K. W. (1987).Diadema antillarum was not a keystone predator in cryptic reef environments. Science, N.Y. 35: 687–689Google Scholar
  32. Jackson, J. B. C., Winston, J. E. (1982). Ecology of cryptic reef communities. I. Distribution and abundance of major groups of encrusting organisms. J. exp. mar. Biol. Ecol. 57: 135–147Google Scholar
  33. Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyllsa, b, c1, c2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194Google Scholar
  34. Johnson, C. R., Mann, K. H. (1988). Diversity, patterns of adaptation, and stability of Nova Scotia kelp beds. Ecol. Monogr. 58: 129–154Google Scholar
  35. Kapraun, D. F., Lemus, A. J., Bula-Meyer, G. (1983). GenusPolysiphonia (Rhodophyta, Ceramiales) in the tropical Western Atlantic. I. Colombia and Venezuela. Bull. mar. Sci. 33: 881–898Google Scholar
  36. Klumpp, D. W., McKinnon, D., Daniel, P. (1987). Damselfish territories: zones of high productivity on coral reefs. Mar. Ecol. Prog. Ser. 40: 41–51Google Scholar
  37. Lawrence, J. M. (1975). On the relationships between marine plants and sea urchins. Oceanogr. mar. Biol. A. Rev. 13: 213–286Google Scholar
  38. Leighton, D. L. (1971). Grazing activities of benthic invertebrates in southern California kelp beds. Nova Hedwigia 32: 421–453Google Scholar
  39. Lessios, H. A. (1988a). Mass mortality ofDiadema antillarum in the Caribbean: what have we learned? A. Rev. Ecol. Syst. 19: 371–393Google Scholar
  40. Lessios, H. A. (1988b). Population dynamics ofDiadema antillarum (Echinodermata: Echinoidea) following mass mortality in Panamá. Mar. Biol. 99: 515–526Google Scholar
  41. Lessios, H. A., Robertson, D. R., Cubit, J. D. (1984). Spread ofDiadema mass mortality through the Caribbean. Science, N.Y. 226: 335–337Google Scholar
  42. Levitan, D. R. (1988). Asynchronous spawning and aggregative behavior in the sea urchinDiadema antillarum (Philippi) [sic]. In: Burke, R. D., Mladenov, P. V., Lambert, P., Parsley R. L. (eds.) Echinoderm biology. Proceedings of the 6th International Echinoderm Conference. A. A. Balkema, Rotterdam, p. 181–186Google Scholar
  43. Lewis, J. B. (1966). Growth and breeding in the tropical echinoidDiadema antillarum Philippi. Bull. mar. Sci. 16: 151–158Google Scholar
  44. Lewis, S. M., Wainwright, P. C. (1985). Herbivore abundances and grazing intensity on a Caribbean coral reef. J. exp. mar. Biol. Ecol. 87: 215–228Google Scholar
  45. Liddell, W. D., Ohlhorst, S. L. (1986). Changes in benthic community composition following the mass mortality ofDiadema at Jamaica. J. exp. mar. Biol. Ecol. 95: 271–278Google Scholar
  46. Littler, M. M., Littler, D. S. (1980). The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form hypothesis. Am. Nat. 116: 25–44Google Scholar
  47. Littler, M. M., Littler, D. S. (1985). Nondestructive sampling. In: Littler, M. M., Littler, D. S. (eds.) Handbook of phycological methods: macroalgae. Cambridge University Press, Cambridge, p. 161–175Google Scholar
  48. Littler, M. M., Taylor, P. R., Littler, D. S. (1983). Algal resistance to herbivory on a Caribbean coral reef. Coral Reefs 2: 111–118Google Scholar
  49. Lubchenco, J. L., Gaines, S. D. (1981). A unified approach to marine plant-herbivore interactions. I. Populations and communities. A. Rev. Ecol. Syst. 12: 405–437Google Scholar
  50. Morrison, D. (1988). Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology 69: 1367–1382Google Scholar
  51. Norris, J. N., Bucher, K. E. (1982). Marine algae and seagrasses from Carrie Bow Cay, Belize. In: Rutzler, K., Macintyre, I. G. (eds.) The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize. Smithsonian Institution Press, Washington, D.C., p. 167–238Google Scholar
  52. Ogden, J. O. (1977). Carbonate-sediment production by parrotfish and sea urchins on Caribbean reefs. Stud. Geol. Am. Ass. Petrol. Geol., Tulsa 4: 281–288Google Scholar
  53. Ogden, J. O., Brown, R. A., Salesky, N. (1973). Grazing by the echinoidDiadema antillarum Philippi: formation of halos around West Indian patch reefs. Science, N.Y. 182: 715–717Google Scholar
  54. Paine, R. T., Vadas, R. L. (1969). The effects of grazing by sea urchinsStrongylocentrotus spp. on benthic algal populations. Limnol. Oceanogr. 14: 710–719Google Scholar
  55. Paul, V. J., Hay, M. E. (1986). Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar. Ecol. Prog. Ser. 33: 255–264Google Scholar
  56. Pearse, J. S., Hines, A. H. (1979). Expansion of a Central California kelp forest following the mass mortality of sea urchins. Mar. Biol. 51: 83–91Google Scholar
  57. Ruyter van Steveninck, E. D. de, Bak, R. P. M. (1986). Changes in abundance of coral-reef bottom components related to mass mortality of the sea urchinDiadema antillarum. Mar. Ecol. Prog. Ser. 34: 87–94Google Scholar
  58. Sammarco, P. W. (1980).Diadema and its relationship to coral spat mortality: grazing, competition and biological disturbance. J. exp. mar. Biol. Ecol. 45: 245–272Google Scholar
  59. Sammarco, P. W. (1982). Effects of grazing byDiadema antillarum Philippi (Echinodermata: Echinoidea) on algal diversity and community structure. J. exp. mar. Biol. Ecol. 65: 83–105Google Scholar
  60. Sammarco, P. W., Levinton, J. S., Ogden, J. O. (1974). Grazing and control of community structure byDiadema antillarum Philippi (Echinodermata: Echinoidea): a preliminary study. J. mar. Res. 32: 47–53Google Scholar
  61. Scheibling, R. (1986). Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68: 186–198Google Scholar
  62. Scott, F. J., Russ, G. R. (1987). Effects of grazing on species composition of the epilithic algal community on coral reefs of the Great Barrier Reef. Mar. Ecol. Prog. Ser. 39: 293–304Google Scholar
  63. Steneck, R. S. (1983). Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew. In: Reaka, M. L. (ed.) The ecology of deep and shallow coral reefs. National Oceanic and Atmospheric Administration, Rockville, Maryland, p. 103–111Google Scholar
  64. Steneck, R. S., Watling, L. (1982). Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Mar. Biol. 68: 299–319Google Scholar
  65. Targett, N. M., Targett, T. E., Vrolijk, N. H., Ogden, J. C. (1986). Effect of macrophyte secondary metabolites on feeding preferences of the herbivorous parrotfishSparisoma radians. Mar. Biol. 92: 141–148Google Scholar
  66. Taylor, W. R. (1960). Marine algae of the eastern tropical and subtropical coasts of the Americas. University of Michigan Press, Ann ArborGoogle Scholar
  67. Vadas, R. L., Elner, R. W., Garwood, P. E., Babb, I. G. (1986). Experimental evaluation of aggregation behavior in the sea urchinStrongylocentrotus droebachiensis. A reinterpretation. Mar. Biol. 90: 433–448Google Scholar
  68. Wharton, W. G., Mann, K. H. (1981). Relationship between destructive grazing by the sea urchin,Strongylocentrotus droebachiensis, and the abundance of American lobster,Homarus americanus, on the Atlantic coast of Nova Scotia. Can. J. Fish. aquat. Sciences 38: 1339–1349Google Scholar
  69. Williams, S. L., Carpenter, R. C. (1988). Nutrient-limited primary productivity of coral reef algal turfs: potential contribution of ammonium excreted byDiadema antillarum. Mar. Ecol. Prog. Ser. 47: 145–152Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • R. C. Carpenter
    • 1
  1. 1.Department of BiologyCalifornia State UniversityNorthridgeUSA

Personalised recommendations