Zeitschrift für Physik B Condensed Matter

, Volume 96, Issue 3, pp 333–340 | Cite as

Crystal-field induced dipoles in heteropolar crystals II: Physical significance

  • Mario Birkholz


The significance of dipole moments induced by crystal fields in heteropolar crystals is discussed with respect to some aspects of solid state physics. Experimental results from structural analyses that provide data on induced dipoles are summarized. The concept of ionic radii is reconsidered, and a new tabulation scheme is proposed in terms of deformed charge distributions. It is shown that spontaneous polarization as well as the pyro- and piezoelectric coefficients are not independent sets of crystallographic constants, but are accounted for by the structural parameters, the ionic polarizabilities and the elastic constants. The dipole concept is extended to statistically induced or random dipoles. They can account for an important part of the binding energy of substitutionally disordered and non-stoichiometric compounds and, therefore, are concluded to stabilize disorder in solids.


61.50.Lt 77.60+v 77.70+a 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkholz, M.: Z. Phys. B96, 325 (1995)Google Scholar
  2. 2.
    Böttcher, C.J.F., Belle, O.C.v., Bordewijk, P., Rip, A.: Theory of electric polarization, Vol. I & II. Amsterdam: Elsevier 1973 and 1978Google Scholar
  3. 3.
    Born, M., Goeppert-Mayer, M.: In Handbuch der Physik, p. 623 ff. Geiger, H., Scheel, K. (eds.), Berlin: Springer 1933Google Scholar
  4. 4.
    Jauch, W.: Phys. Rev. B44, 6864 (1991)Google Scholar
  5. 5.
    Schotte, U., Graf, H.A., Dachs, H.: J. Phys.: Condens. MatterI, 3765 (1989)Google Scholar
  6. 6.
    Schotte, U., Kabs, M., Dachs, H., Schotte, K.D.: J. Phys: Condens. Matter4, 9283 (1992)Google Scholar
  7. 7.
    Miller, T.M., Bederson, B.: In: Advances in atomic and molecular physics, p. 1. Bates, D.R., Bederson, B. (eds.) New York: Academic Press 1977Google Scholar
  8. 8.
    Wyckoff, R.W.G.: Crystal structures, Vol. 1. New York: Interscience 1963Google Scholar
  9. 9.
    Bertaut, E.F.: J. Phys. (Paris)39, 1331 (1978)Google Scholar
  10. 10.
    Chattopadhyay, T.K., Schnering, H.G.v.: Z. Kristallogr.,167, 1 (1984)Google Scholar
  11. 11.
    Jauch, W., Schultz, A.J., Heger, G.: J. Appl. Crystallogr.20, 117 (1987)Google Scholar
  12. 12.
    Jauch, W., Schultz, A.J., Schneider, J.R.: J. Appl. Crystallogr.21, 975 (1988)Google Scholar
  13. 13.
    Gonschorek, W.: Z. Kristallogr.160, 187 (1982)Google Scholar
  14. 14.
    Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J., Smith, J.V.: J. Am. Chem. Soc.109, 3639 (1987)Google Scholar
  15. 15.
    Howard, C.J., Sabine, T.M., Dickson, F.: Acta Crystallogr. B47, 462 (1991)Google Scholar
  16. 16.
    Stevens, E.D., DeLucia, M.L., Coppens, P.: Inorg. Chem.19, 813 (1979)Google Scholar
  17. 17.
    Buttner, R.H., Maslen, E.N.: Acta Crystallogr. B48, 764 (1992)Google Scholar
  18. 18.
    Cromer, D.T., Mann, J.B.: Acta Crystallogr. A24, 321 (1968)Google Scholar
  19. 19.
    Cromer, D.T., Liberman, D.: J. Chem. Phys.53, 1891 (1970)Google Scholar
  20. 20.
    Finklea, S.L., Cathey, L., Amma, E.L.: Acta Crystallogr. A32, 529 (1976)Google Scholar
  21. 21.
    Birkholz, M.: J. Phys: Condens. Matter4, 6227 (1992)Google Scholar
  22. 22.
    Cotton, F.A., Wilkinson, G.: Advanced inorganic chemistry. p. 52. New York, Wiley 1972Google Scholar
  23. 23.
    Zheludey, I.S.: Kristallphysik und Symmetrie, pp. 26 and 150. Berlin: Akademie-Verlag 1990Google Scholar
  24. 24.
    Kleber, W., Bautsch, H.-J., Bohm, J., Kleber, I.: Einführung in die Kristallographie, pp. 249 and 262. Berlin: Verlag Technik 1990Google Scholar
  25. 25.
    Tichy, J., Gautschi, G.: Piezoelektrische Meßtechnik, p. 76. Berlin: Springer 1980Google Scholar
  26. 26.
    Weißmantel, C., Haman, C.: Grundlagen der Festkörperphysik, Chap. 5.1 Berlin: VEB Deutscher Verlag der Wissenschaften 1989Google Scholar
  27. 27.
    Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik, p. 160, Chap. 6. Berlin: VEB Deutscher Verlag der Wissenschaften 1980Google Scholar
  28. 28.
    Takagi, H., Cava, R.J., Marezio, M., Batlogg, B., Krajewski, J.J., Peck, W.F., Bordet, P., Cox, D.E.: Phys. Rev. Lett.68, 3777 (1992)Google Scholar
  29. 29.
    Birkholz, M., Rudert, R.: Z. Phys. B (in preparation)Google Scholar
  30. 30.
    Goodenough, J.B., Hamnett, A.: In Landolt-Börnstein-Zahlenwerte aus Naturwissenschaften und Technik. Madelung. Schulz, M., Weiss, H. (eds.) Vol. 17 g, p. 208. Berlin: Springer 1984Google Scholar
  31. 31.
    Fiechter, S., Birkholz, M., Hartmann, A., Dulski, P., Giersig, M., Tributsch, H., Tilley, R.J.D.: J. Mat. Res.7, 1829 (1992)Google Scholar
  32. 32.
    Jauch, W., Schneider, J.R., Dachs, H.: Solid State Commun48, 907 (1983)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Mario Birkholz
    • 1
  1. 1.Ingenieurbüro für SolartechnikBerlinGermany

Personalised recommendations