Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 71, Issue 2, pp 231–235 | Cite as

Generalized specific heat as a characteristic measure in chaos

  • F. Schlögl
  • E. Schöll
Article

Abstract

The bit number variance of the invariant density of a chaotic dynamic system is discussed as a characteristic measure which represents an analogue of the specific heat in statistical thermodynamics. It is sensitive to correlations in a higher degree than the entropy. Moreover it is invariant under scaling transformations of the coordinates. Its relation with the spectrum of generalized dimensionsD q and the spectrum of singularitiesf(α) is pointed out.

Keywords

Spectroscopy Entropy Neural Network Dynamic System State Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruelle, D.: Thermodynamic formalism. In: Encyclopedia of mathematics and its applications, Vol. 5. Rota, G.C. (ed.). Reading, Mass.: Addison-Wesley 1978Google Scholar
  2. 2.
    Jensen, M.H., Kadanoff, L.P., Libehaber, A., Procaccia, I., Stavans, J.: Phys. Rev. Lett.55, 2798 (1985)Google Scholar
  3. 3.
    Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Phys. Rev. A33, 1141 (1986)Google Scholar
  4. 4.
    Feigenbaum, M.J., Jensen, M.H., Procaccia, I.: Phys. Rev. Lett.57, 1503 (1986)Google Scholar
  5. 5.
    Bohr, T., Rand, D.: Physica25D, 387 (1987)Google Scholar
  6. 6.
    Katzen, D., Procaccia, I.: Phys. Rev. Lett.58, 1169 (1987)Google Scholar
  7. 7.
    Grassberger, P.: Phys. Lett. A97, 227 (1983)Google Scholar
  8. 8.
    Hentschel, H.G.E., Procaccia, I.: Physica8D, 435 (1983)Google Scholar
  9. 9.
    Alstrøm, P.: On multifractals: thermodynamics and critical exponents: (Preprint) July 1987Google Scholar
  10. 10.
    Grassberger, P., Procaccia, I.: Phys. Rev. A28, 2591 (1983); Physica13D, 34 (1984)Google Scholar
  11. 11.
    Eckmann, J.P., Ruelle, D.: Rev. Mod. Phys.57, 617 (1985)Google Scholar
  12. 12.
    Szépfalusy, P., Tél, T., Csordás, A., Z. Kovács: Phase transitions associated with dynamical properties of chaotic systems: (Preprint) June 1987Google Scholar
  13. 13.
    Mayer-Kress, G. (ed.): Dimensions and entropies in chaotic systems. Springer Series in Synergetics, Vol. 32. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  14. 14.
    Schlögl, F.: Phys. Rep.62, 267 (1980)Google Scholar
  15. 15.
    Schlögl, F.: Z. Phys. B — Condensed Matter52, 51 (1983)Google Scholar
  16. 16.
    Schöll, E.: Nonequilibrium phase transitions in semiconductors. Springer Series in Synergetics, Vol. 35, §2.1.4. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  17. 17.
    Nicolis, J.S., Mayer-Kress, G., Haubs, G.: Z. Naturforsch.38a, 1157 (1983)Google Scholar
  18. 18.
    Fujisaka, H.: Progr. Theor. Phys.70, 1264 (1983);71, 513 (1984)Google Scholar
  19. 19.
    Haubs, G., Haken, H.: Z. Phys. B — Condensed Matter59, 459 (1985)Google Scholar
  20. 20.
    Tél, T.: Phys. Rev.36, 2507 (1987)Google Scholar
  21. 21.
    Kantz, H., Grassberger, P.: Physica17D, 75 (1985)Google Scholar
  22. 22.
    Szépfalusy, P., Tél, T.: Phys. Rev. A34, 2520 (1986)Google Scholar
  23. 23.
    Schlögl, F.: J. Stat. Phys.46, 135 (1987)Google Scholar
  24. 24.
    Schlögl, F.: Z. Phys.267, 77 (1974); Z. Phys. B — Condensed Matter and Quanta20, 177 (1975); Z. Phys. B — Condensed Matter and Quanta22, 301 (1975)Google Scholar
  25. 25.
    Ott, E., Withers, W.D., Yorke, J.A.: J. Stat. Phys.36, 687 (1984)Google Scholar
  26. 26.
    Naber, H.: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. Schlögl
    • 1
  • E. Schöll
    • 1
  1. 1.Institut für Theoretische PhysikRheinisch-Westfälische Technische HochschuleAachenFederal Republic of Germany

Personalised recommendations