Zeitschrift für Physik B Condensed Matter

, Volume 60, Issue 1, pp 61–71 | Cite as

Nonuniversal critical phenomena along the lambda line of4He

I. Specific heat in three dimensions
Article

Abstract

General relations between the critical specific heat above and below the lambda transition of4He are derived. The specific heat aboveTλ is calculated in three dimensions up to two-loop order. The relations can be used to determine the effective renormalized static couplings of modelF without integrating the renormalization-group flow equations. The effect of different normalizations of the couplings is discussed. The theory is applicable both to asymptotic universal and to nonasymptotic nonuniversal properties well away fromTλ(P) and provides part of the basis for quantitative predictions of other nonuniversal critical phenomena along the lambda line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lipa, J.A., Chui, T.C.P.: Phys. Rev. Lett.51, 2291 (1983); Physica126B, 481 (1984)Google Scholar
  2. 2.
    Mehrotra, R., Ahlers, G.: Phys. Rev. Lett.51, 2116 (1983); Phys. Rev. B30, 5116 (1984)Google Scholar
  3. 3.
    Singsaas, A., Ahlers, G.: Phys. Rev. B29, 4951 (1984)Google Scholar
  4. 4.
    Dingus, M., Zhong, F., Meyer, H.: Phys. Rev. Lett.54, 2347 (1985); Meyer, H.: Physica126B, 326 (1984)Google Scholar
  5. 5.
    Tam, W.Y., Ahlers, G.: Private communicationGoogle Scholar
  6. 6.
    Vidal, F., Tarvin, J.A., Greytak, T.J.: Phys. Rev. B25, 7040 (1982)Google Scholar
  7. 7(a).
    For reviews see: Dohm, V., Folk, R.: In: Festkörperprobleme (Advances in Solid State Physics). Grosse, F. (ed.) Vol. XXII, p. 1. Braunschweig: Vieweg 1982;Google Scholar
  8. 7(b).
    Hohenberg, P.C.: Physica109&110B, 1436 (1982);Google Scholar
  9. 7(c).
    Dohm, V.: In: Multicritical phenomena, Pynn, R., Skjeltorp, A. (eds.), p. 81 New York: Plenum Press 1984Google Scholar
  10. 8.
    Dohm, V.: Phys. Rev. Lett.53, 1379, 2520 (1984)Google Scholar
  11. 9.
    Bagnuls, C., Bervillier, C.: PreprintsGoogle Scholar
  12. 10.
    Fisher, M.E.: Rev. Mod. Phys.46, 597 (1974)Google Scholar
  13. 11.
    Dohm, V., Folk, R.: Phys. Rev. Lett.46, 349 (1981); Z. Phys. B — Condensed Matter41, 251 (1981)Google Scholar
  14. 12.
    Ferrell, R.A., Bhattacharjee, J.K.: Phys. Rev. B24, 5071 (1981); Phys. Rev. Lett.51, 487 (1983)Google Scholar
  15. 13.
    Ahlers, G., Hohenberg, P.C., Kornblit, A.: Phys. B25, 3136 (1982)Google Scholar
  16. 14.
    Dohm, V., Folk, R.: Z. Phys. B — Condensed Matter45, 129 (1981)Google Scholar
  17. 15.
    Halperin, B.I., Hohenberg, P.C., Siggia, E.D.: Phys. Rev. B13, 1299 (1976); B21, 2044 (1980)Google Scholar
  18. 16.
    Dohm, V.: Z. Phys. B, (1985)Google Scholar
  19. 17.
    Brézin, E., LeGuillou, J.C., Zinn-Justin, J.: In: Phase transitions and critical phenomena. Domb, C., Green, M.S. (eds.), Vol. VI. New York: Academic Press 1976Google Scholar
  20. 18.
    Amit, D.J.: Field theory, the renormalization group and critical phenomena. New York: McGraw-Hill 1978Google Scholar
  21. 19.
    't Hooft, G.: Nucl. Phys. B61, 455 (1973)Google Scholar
  22. 20.
    Nelson, D.R.: Phys. Rev. B11, 3504 (1975); Rudnick, J., Nelson, D.R.: Phys. Rev. B13, 2208 (1976)Google Scholar
  23. 21.
    Nicoll, J.F., Chang, T.S., Stanley, H.E.: Phys. Rev. B12, 458 (1975)Google Scholar
  24. 22.
    Horner, H.: Z. Phys. B23, 183 (1976); Amit, D.J., Goldschmidt, Y.Y.: Ann. Phys. (NY)114, 356 (1978)Google Scholar
  25. 23.
    Theumann, W.K.: Phys. Rev. B21, 1930 (1980)Google Scholar
  26. 24.
    Bagnuls, C., Bervillier, C.: J. Phys. (Paris) Lett.45, 95, 127 (1984)Google Scholar
  27. 25.
    Nicoll, J.F., Albright, P.C.: Phys. Rev. B31, 4576 (1985)Google Scholar
  28. 26.
    Halperin, B.I., Hohenberg, P.C., Ma, S-K.: Phys. Rev. B10, 139 (1974)Google Scholar
  29. 27.
    Dohm, V.: In: Applications of field theory to statistical mechanics. Garrido, L. (ed.), p. 263. Berlin, Heidelberg, New York, Tokyo: Springer 1985. The r.h.s of Eq. (6) of this paper should be multiplied byK d−1 Google Scholar
  30. 28.
    See e.g. Sect. IX A of Ref. 17 or App. 8-1 of Ref. 18Google Scholar
  31. 29.
    Lawrie, I.D.: J. Phys. A9, 961 (1976)Google Scholar
  32. 30.
    Vladimirov, A.A., Kazakov, D.I., Tazarov, O.V.: Zh. Eksp. Teor. Fiz.77, 1035 (1979) (Sov. Phys. — JETP50 521 (1979))Google Scholar
  33. 31.
    Kang, J.S.: Phys. Rev. D13, 851 (1976)Google Scholar
  34. 32.
    Brézin, E., De Dominicis, C.: Phys. Rev. B12, 4954 (1975)Google Scholar
  35. 33.
    Eisenriegler, E., Schaub, B.: Z. Phys. B — Condensed Matter38, 65 (1980)Google Scholar
  36. 34.
    Chang, M.C., Houghton, A.: Phys. Rev. B21, 1881. Note that their definition ofC H(their Eq. (3.7)) differs from our\(\mathop {C_\phi }\limits^ \circ \) (our Eq. (2.12) fork=0) by the factor 1/4, i.eC H=\(\mathop {C_\phi }\limits^ \circ \)/4, because of the factor 1/2 in front of μ2 in their Eqs (1.1) and (3.1)Google Scholar
  37. 35.
    Dohm, V.: In: Proceedings of the Seventeenth International Conference on Low Temperature Physics. Eckern, U., Schmid, A., Weber, W., Wühl, H. (eds.), p. 953. Amsterdam: North Holland 1984Google Scholar
  38. 36.
    Singsaas, A., Ahlers, G.: Phys. Rev. B30, 5103 (1984)Google Scholar
  39. 37.
    Chetyrkin, K.G., Gorishny, S.G., Larin, S.A., Tkachov, F.V.: Phys. Lett.132B, 351 (1983)Google Scholar
  40. 38.
    Lawrie, I.D.: J. Phys. A18, 1141 (1985)Google Scholar
  41. 39.
    Schloms, R.: Diplom thesis, TH AachenGoogle Scholar
  42. 40.
    Le Guillou, J.C., Zinn-Justin, J.: Phys. Rev.B21, 3976 (1980)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • V. Dohm
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Hochschule AachenAachenFederal Republic of Germany

Personalised recommendations