Digestive Diseases and Sciences

, Volume 36, Issue 6, pp 827–862 | Cite as

Physiology and pathophysiology of colonic motor activity

Part one of two
  • Sushil K. Sarna
Review Article


Public Health Motor Activity Colonic Motor Colonic Motor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sarna SK, Otterson MF: Small intestinal physiology and pathophysiology. Gastroenterol Clin North Am Motil Dis 18(2):375–404, 1989Google Scholar
  2. 2.
    Sarna SK, Soergel KH, Harig JH, Loo FD, Wood CM, Donahue KM, Ryan RP: Spatial and temporal patterns of human jejunal contractions. Am J Physiol (Gastrointest Liver Physio 19) 217:G423-G429, 1989Google Scholar
  3. 3.
    Cowles VE, Sarna SK: Relationship between small intestinal motor activity and transit in secretory diarrhea. Am J Physiol 259(GLP 22): G420-G429, 1990Google Scholar
  4. 4.
    Summers RW, Dusdieker NS: Patterns of spike burst spread and flow in the canine small intestine. Gastroenterology 81:742–750, 1981Google Scholar
  5. 5.
    Schemann M, and Ehrlein H-J: Postprandial patterns of canine jejunal motility and transit of luminal content. Gastroenterology 90:991–1000, 1986Google Scholar
  6. 6.
    Summers RW, Anuras S, Green J: Jejunal manometry patterns in health, partial intestinal obstruction, and pseudoobstruction. Gastroenterology 85:1290–1300, 1983Google Scholar
  7. 7.
    Kellow JF, Borody TJ, Phillips SF, Tucker RL, Haddad AC: Human interdigestive motility: Variations in patterns from esophagus to colon. Gastroenterology 91:386–395, 1986Google Scholar
  8. 8.
    Sarna SK, Latimer P, Campbell D, Waterfall WE: Electrical and contractile activities of the human rectosigmoid. Gut 23:698–705, 1982Google Scholar
  9. 9.
    Sarna SK, Condon R, Cowles V: Colonic migrating and nonmigrating motor complexes in dogs. Am J Physiol (Gastrointest Liver Physiol 9) 246:G355-G360, 1984Google Scholar
  10. 10.
    Sarna SK: Myoelectric correlates of colonic motor complexes and contractile activity. Am J Physiol (Gastrointest Liver Physiol 13) 250:G113-G220, 1986Google Scholar
  11. 11.
    Bueno L, Fioramonti J, Ruckebusch Y, Frexinos J, Coulom P: Evaluation of colonic myoelectrical activity in health and functional disorders. Gut 21:480–485, 1980Google Scholar
  12. 12.
    Huizinga JD, Stern HS, Chow E, Diamant NW, El-Sharkawy TY: Electrophysiologic control of motility in human colon. Gastroenterology 88:500–511, 1985Google Scholar
  13. 13.
    El-Sharkawy TY: Electrical activity of the muscle layers of the canine colon. J Physiol London 342:67–83, 1983Google Scholar
  14. 14.
    Huizinga JD, Diamant NE, El-Sharkawy TY: Electrical basis of contractions in the muscle layers of the pig colon. Am J Physiol (Gastrointest Liver Physiol 8) 245:G482-G491, 1983Google Scholar
  15. 15.
    Jule T: Etudein vitro de l'activite electromyographique du colon proximal et distal du lapin. J Physiol Paris 68:305–329, 1974Google Scholar
  16. 16.
    Ruckebush Y, Fioramonti J: Colonic myoelectrical spiking activity: Major patterns and significance in six different species. Zbl Vet Med A 27:1–8, 1980Google Scholar
  17. 17.
    Wienbeck M: The electrical activity of the cat colonin vivo. I. The normal electrical activity and its relationship to contractile activity. Res Exp Med 158:268–279, 1972Google Scholar
  18. 18.
    Snape VJ, Jr, Shiff S, Cohen S: Effect of deoxycholic acid on colonic motility in the rabbit. Am J Physiol 238 (Gastrointest Liver Physiol 1):G321-G325, 1980Google Scholar
  19. 19.
    Duthie HL, Kirk D: Electrical activity of human colonic smooth musclein vitro J Physiol London 283:319–330, 1978Google Scholar
  20. 20.
    Kingma YJ, Chambers MM, Bowes KL: Relationship between contractile and intracellular electrical activities in canine colon muscle layers.In Gastrointestinal Motility. Roman (ed). Lancaster, MTP Press Ltd., 1984Google Scholar
  21. 21.
    Provenzale L, Pisano M: Methods for recording electrical activity of the human colonin vivo. Am J Dig Dis 16:712–722, 1971Google Scholar
  22. 22.
    Dapoigny M, Trolese JF, Brommelaer G, Tournut R: Myoelectric spiking activity of right colon, left colon, and rectosigmoid of healthy humans. Dig Dis Sci 33(8):1007–1012, 1988Google Scholar
  23. 23.
    Sarna SK:In vivo myoelectric activity: Methods, analysis and interpretation.In Handbook of Physiology Gastrointestinal Motility and Circulation. Wood (ed). American Physiological Society, Bethesda, 1989Google Scholar
  24. 24.
    Sarna SK: Gastrointestinal electrical activity: Terminology. Gastroenterology 68:1631–1635, 1975Google Scholar
  25. 25.
    Daniel EE, Honour AJ, Bogoch A: Electrical activity of the longitudinal muscle of dog small intestine studied in vivo using microelectrodes. Am J Physiol 198:113–118, 1960Google Scholar
  26. 26.
    Szurszewski JH: Electrical basis for gastrointestinal motility.In Physiology of the Gastrointestinal Tract. LR Johnson (ed). New York, Raven, 1981Google Scholar
  27. 27.
    Weisbrodt NW: Motility of the small intestine.In Physiology of the Gastrointestinal Tract. LR Johnson (ed). New York, Raven, 1981Google Scholar
  28. 28.
    Bortoff A: Myogenic control of intestinal motility. Phys Rev 56(2):418–434, 1976Google Scholar
  29. 29.
    Sanders KM: Excitation-contraction coupling without Ca2+ action potentials in small intestine. Am J Physiol (Cell Physiol 13) 244:C356-C361, 1983Google Scholar
  30. 30.
    Vantrappen G, Hostein J, Janssens J, Vandeweerd M, DeWever I: Do slow waves induce mechanical activity? Gastroenterology 84:1341, 1983Google Scholar
  31. 31.
    Sarna SK, Daniel EE, Kingma YJ: Simulation of slow-wave electrical activity of small intestine. Am J Physiol 221:166–175, 1971Google Scholar
  32. 32.
    Sarna SK, Daniel EE, Kingma YJ: Simulation of the electric-control activity of the stomach by an array of relaxation oscillators. Am J Dig Dis 17:299–310, 1972Google Scholar
  33. 33.
    Brodribb JM, Condon RE, Cowles V, DeCosse JJ: Effect of dietary fiber on intraluminal pressure and myoelectrical activity of left colon in monkeys. Gastroenterology 77:70–74, 1979Google Scholar
  34. 34.
    Kelly KA, Code CF: Canine gastric pacemaker. Am J Physiol 220(1):112–118, 1971Google Scholar
  35. 35.
    Szurszewski JH, Elverback LR, Code CF: Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol 218:1468–1473, 1970Google Scholar
  36. 36.
    Diamant NE, Bortoff A: Nature of the intestinal slow-wave frequency gradient. Am J Physiol 216(2):301–307, 1969Google Scholar
  37. 37.
    Daniel E, Bowes KL, Duchon G: The structural basis for control of gastrointestinal motility in man.In Proceedings of the V International Symposium on Gastrointestinal Motility. Vantrappen (ed). Herentals, Belgium, Typoff Press, 1975Google Scholar
  38. 38.
    Sarna SK: The intact and intrinsic frequency gradients of canine colonic electrical and mechanical activities. Gastroenterology 78:1250, 1980Google Scholar
  39. 39.
    Shearin NL, Bowes KL, Kingma YJ:In vitro electrical activity in canine colon. Gut 20:780–786, 1978Google Scholar
  40. 40.
    Chambers MM, Bowes KL, Kingma YL, Bannister C, Cote KR.In vitro electrical activity in huamn colon. Gastroenterology 81:502–508, 1981Google Scholar
  41. 41.
    Christensen J, Anuras S, Hauser RL: Migrating spike bursts and electrical slow waves in the cat colon: Effect of sectioning. Gastroenterology 66:240–247, 1974Google Scholar
  42. 42.
    Cannon WB: The movements of the intestine studied by means of the röentgen rays. Am J Physiol 66:251–277, 1902Google Scholar
  43. 43.
    Christensen J, Hansen RL: Longitudinal axle coupling of slow waves in proximal cat colon. Am J Physiol 221:246–250, 1971Google Scholar
  44. 44.
    Sarna SK: Models of smooth muscle electrical activity.In Smooth Muscle. Daniel and Paton (eds). New York, Plenum, 1975Google Scholar
  45. 45.
    Daniel EE, Sarna SK: The generation and conduction of activity in smooth muscle. Annul Rev Pharmacol Toxicol 1978Google Scholar
  46. 46.
    Gabella G: Intracellular junctions between circular and longitudinal intestinal muscle layers. Z Zellforsch 125:191–199, 1972Google Scholar
  47. 47.
    Bortoff A: Intestinal slow-wave propagation velocity as a function of longitudinal muscle impedance.In Physiology of Smooth Muscle. Bulbring and Shuba (eds). New York, Raven Press, 1976Google Scholar
  48. 48.
    Sarna SK: Colonic, electrical control activity as an indicator of colonic motor function. Gastrointestinal Motility: Which Test? (ed). Wrightson Biomedical Publishing, Petersfield, 1989Google Scholar
  49. 49.
    Sarna SK, Bardakjian BL, Waterfall WE, Lind JF: Human colonic electrical control activity (ECA). Gastroenterology 778:1526–1536, 1980Google Scholar
  50. 50.
    Schang JC, Hemond M, Hebert M, Pilot M: Myoelectrical activity and intraluminal flow in human sigmoid colon. Dig Dis Sci 31:1331–1337, 1986Google Scholar
  51. 51.
    El-Sharkawy TY: Electrophysiological control of motility in canine colon.In Gastrointestinal Motility in Health and Disease. Duthie (ed). Lancaster, MTP Press, 1978Google Scholar
  52. 52.
    Stoddard, CJ, Duthie HL, Smallwood RH, Linkens DH: Colonic myoelectric activity in man: Comparison of recording techniques and methods of analysis. Gut 29:476–483, 1979Google Scholar
  53. 53.
    Sarna SK, Waterfall WE, Bardakjian BL, Lind JF: Types of human colonic electrical activities recorded postoperatively. Gastroenterology 81:61–70, 1981Google Scholar
  54. 54.
    Bardakjian BL, Sarna SK: A computer model of human colonic electrical control activity (ECA). IEEE Trans Biomed Eng. BME-27:193–202, 1980Google Scholar
  55. 55.
    Linkens DA, Taylor I, Duthie HL: Mathematical modeling of the colorectal myoelectrical activity in humans. IEEE Trans Biomed Eng. BME-23:101–110, 1976Google Scholar
  56. 56.
    Bardakjian BL, Sarna SK, Diamant NE: Composite synthesized relaxation oscillators: Application to modelling of colonic ECA and ERA. Gastrointest J Motil 2:109–116, 1990Google Scholar
  57. 57.
    Sarna SK: The control of colonic motility.In Functional Disorders of the Digestive Tract. Chey (ed). New York, Raven, 1982Google Scholar
  58. 58.
    Durdle NG, Kingma YJ, Bowes KL, Chambers MM: Origin of slow waves in the canine colon. Gastroenterology 84:375–382, 1983Google Scholar
  59. 59.
    Fioramonti J, Bueno L: Diurnal changes in colonic motor profile in conscious dogs. Dig Dis Sci 28:257–264, 1983Google Scholar
  60. 60.
    van Merwyk AJ, Duthie HL: Characteristics of human colonic smooth musclein vitro.In Gastrointestinal Motility. Christensen (ed). New York, Raven, 1980Google Scholar
  61. 61.
    Thuneberg L: Interstitial cells of Cajal: Intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130, 1982Google Scholar
  62. 62.
    Barajas-Lopez C, Berezin I, Daniel EE, Huizinga JD: Pacemaker activity recorded in interstitial cells of cajal of the gastrointestinal tract. Am J Physiol Cell Physiol 257(26):C830-C835, 1989Google Scholar
  63. 63.
    Berezin I, Huizinga JD, Farraway L, Daniel EE: Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Can J Physiol Pharmacol 68:922–932, 1989Google Scholar
  64. 64.
    Ward SM, Sanders KM: Pacemaker activity in septal structures of canine colonic circular muscle. Am J Physiol (Gastrointest) 259(22):G264-G273, 1990Google Scholar
  65. 65.
    Langton P, Ward SM, Carl A, Norell MA, Sanders KM: Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci USA 86:7280–7284, 1989Google Scholar
  66. 66.
    Du C, Conklin JL: Origin of slow waves in the isolated proximal colon of the cat. J Autonom Nerv Syst 28:167–178, 1989Google Scholar
  67. 67.
    Smith TK, Reed JB, Sanders KM: Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Physiol (Cell Physiol 21) 252:C215-C224, 1987Google Scholar
  68. 68.
    Caprilli R, Onori L: Origin, transmission and ionic dependence of colonic electrical slow waves. Scand J Gastroenterol 7:65–74, 1972Google Scholar
  69. 69.
    Berezin I, Huizinga JD, Farraway L, Daniel EE: Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Can J Physiol Pharmacol 68:922–932, 1989Google Scholar
  70. 70.
    Huizinga JD, Berezin I, Daniel EE, Chow E: Inhibitory innervation of colonic smooth muscle cells and interstitial cells of cajal. Can J Physiol Pharmacol 68:447–454, 1990Google Scholar
  71. 71.
    Conklin JL, Du C: Pathways of slow-wave propagation in proximal colon of cats. Am J Physiol Gastrointest Liver Physiol 258(21):G894-G903, 1990Google Scholar
  72. 72.
    Sanders KM, Stevens R, Burke E, Ward SM: Slow waves actively propagate at submucosal surface of circular layer in canine colon. Am J Physiol Gastrointest Liver Physiol 259(22):G258-G263, 1990Google Scholar
  73. 73.
    Faussone Pellegrini MS, Cortesini C: Ultrastructural peculiarities of the inner portion of the circular layer of colon. Acta Anat 120:185–189, 1984Google Scholar
  74. 74.
    Hou J, Otterson MF, Sarna SK: Local effect of substance P on colonic motor activity in different experimental states. Am J Physiol (Gastrointest Liver Physiol 19) 256:G997-G1004, 1989Google Scholar
  75. 75.
    Almy TP, Kern F Jr, Tulin M: Alterations in colonic function in man under stress. II. Experimental production of sigmoid spasm in healthy persons. Gastroenterology 12:425–436, 1949Google Scholar
  76. 76.
    Narducci F, Snape WJ Jr, Battle WM, London RL, Cohen S: Increased colonic motility during exposure to a stressful situation. Dig Dis Sci 30:40–44, 1985Google Scholar
  77. 77.
    Welgen P, Meshkinpour H, Beeler M: Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94:1150–1156, 1988Google Scholar
  78. 78.
    Latimer P, Sarna S, Campbell D, Latimer M, Waterfall W, Daniel EE: Colonic motor and myoelectric activity: A comparative study of normal subjects, psychoneurotic patients, and patients with irritable bowel syndrome. Gastroenterology 80:893–901, 1981Google Scholar
  79. 79.
    Karaus M, Sarna SK: Giant migrating contractions during defecation in the dog colon. Gastroenterology 92:925–933, 1987Google Scholar
  80. 80.
    Hardcastle JD, Mann CV: Physical factors in the stimulation of colonic peristalsis. Gut 11:41–46, 1970Google Scholar
  81. 81.
    Torsoli A, Ramorino ML, Ammaturo MV, Capurso L, Paoluzi P, Anzini F: Mass movements and intracolonic pressures. Am J Dig Dis 16:693–696, 1971Google Scholar
  82. 82.
    Williams CL, Peterson JM, Villar RG, Burks TF: Corticotropin-releasing factor directly mediates colonic responses to stress. Am J Physiol Gastrointest Liver Physiol 253(16):G582-G586, 1987Google Scholar
  83. 83.
    LaHann TR, Horita A: Thyrotropin releasing hormone: Centrally mediated effects on gastrointestinal motor activity. J Pharmacol Exp Ther 222:66–70, 1982Google Scholar
  84. 84.
    Smith JR, LaHann TR, Chestnut RM, Carino MA, Horita A: Thyrotropin-releasing hormone: Stimulation of colonic activity following intracerebroventricular administration. Science 196:660–662, 1977Google Scholar
  85. 85.
    Bueno L, Fioramonti J, Hondé C, Fargeas MJ, Primi MP: Central and peripheral control of gastrointestinal and colonic motility by endogenous opiates in conscious dogs. Gastroenterology 88:549–556, 1985Google Scholar
  86. 86.
    Rostad H: Colonic motility in the cat. III. Influence of hypothalamic and mesencephalic stimulation. Acta Physiol Scand 89:105–115, 1973Google Scholar
  87. 87.
    Rostad H: Colonic motility in the cat. V. Influence of telencephalic stimulation and the peripheral pathways mediating the effects. Acta Physiol Scand 89:169–181, 1973Google Scholar
  88. 88.
    Rostad H: Colonic motility in the cat. IV. Peripheral pathways mediating the effects induced by hypothalamic and mesencephalic stimulation. Acta Physiol Scand 89:154–168, 1973Google Scholar
  89. 89.
    Boom R, Chávez-Ibarra G, Del Villar JJ, Hernández-Péon R: Changes of colonic motility induced by electrical and chemical stimulation of the forebrain and hypothalamus in cats. Int J Neuropharmacol 4:169–175, 1965Google Scholar
  90. 90.
    Fang HS, Kuo YF: Colonic motility following hypothalamic stimulation in the dog. Aerospace Med 38:812–814, 1967Google Scholar
  91. 91.
    Ingersoll EH, Jones L: The effect upon the colon of electrical stimulation of forebrain areas in the cat. Am J Physiol 146:187–191, 1946Google Scholar
  92. 92.
    Wang SC, Clark G, Dey FL, Ransom SW: Further study on the gastrointestinal motility following stimulation of the hypothalamus. Am J Physiol 130:81–88, 1940Google Scholar
  93. 93.
    Romaniuk A: Emotional responses evoked by hypothalamic stimulation in cats. Bull Acad Pol Sci 11:437–440, 1963Google Scholar
  94. 94.
    Romaniuk A: Representation of aggression and flight reactions in the hypothalamus of the cat. Acta Biol Exp 25:177–186, 1965Google Scholar
  95. 95.
    Zbrozyna AW: The organization of the defense reaction elicited from amygdala and its connections.In The Neurobiology of the Amygdala. Eleftheriou (ed). New York, Plenum, 1972Google Scholar
  96. 96.
    Hess WR, Brügger M: Das subkortikale Zentrum der affektiven Abwehrreaktion. Helv Physiol Pharmacol Acta 1:33–52, 1943Google Scholar
  97. 97.
    Anand BK, Brobeck JR: Hypothalamic control of food intake in rats and cats. Yale J Biol Med 24:123–140, 1951Google Scholar
  98. 98.
    Grossman SP: Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am J Physiol 202:872–882, 1962Google Scholar
  99. 99.
    Schofield GC: Anatomy of muscular and neural tissues in the alimentary canal. Handbook of Physiology—Alimentary Canal. CF Code (ed). Washington DC, American Physiological Society, 1579–1628, 1968Google Scholar
  100. 100.
    Fukai K, Fukuda H: Three serial neurones in the innervation of the colon by the sacral parasympathetic nerve of the dog. J Physiol London 362:69–78, 1985Google Scholar
  101. 101.
    de Groat WC, Krier J: The sacral parasympathetic reflex pathway regulating colonic motility and defaecation in the cat. J Physiol London 276:481–500, 1978Google Scholar
  102. 102.
    Gillespie JS: Electrical activity in the colon. Handbook of Physiology. CF Code (ed). Baltimore, Waverly Press, 2073–2120, 1968Google Scholar
  103. 103.
    de Groat WC, Krier J: An electrophysiological study of the sacral parasympathetic pathway to the colon of the cat. J Physiol London 260:425–445, 1976Google Scholar
  104. 104.
    McFadden GDF, Loughbridge JS, Milroy TH: The nerve control of the distal colon. Q J Exp Physiol 25:315–327, 1935Google Scholar
  105. 105.
    Mizeres NJ: The anatomy of the autonomic nervous system in the dog. Am J Anat 96:285–318, 1955Google Scholar
  106. 106.
    Christensen J, Rick GA, Robison BA, Stiles MJ, Wix MA: Arrangement of the myenteric plexus throughout the gastrointestinal tract of the opossum. Gastroenterology 85:890–899, 1983Google Scholar
  107. 107.
    Telford ED, Stopford JSB: The autonomic nerve supply of the distal colon. Br Med J 1:572–574, 1934Google Scholar
  108. 108.
    Mitchell GAG: The innervation of the distal colon. Edinb Med J 42:11–20, 1935Google Scholar
  109. 109.
    Lannon J, Weller E: The parasympathetic supply of the distal colon. Br J Surg 34:373–378, 1946/1947Google Scholar
  110. 110.
    Gray W, Hendershot C, Whitrock RM, Seevers MH: Influence of the parasympathetic nerves and their relation to the action of atropine in the ileum and colon of the dog. Am J Physiol 181:679–687, 1955Google Scholar
  111. 111.
    Langley JN, Andersson HK: On the innervation of the pelvic and adjoining viscera. J Physiol London 18:67–105, 1895Google Scholar
  112. 112.
    Bayliss WM, Starling EH: The movements and the innervation of the large intestine. J Physiol London 26:107–118, 1900Google Scholar
  113. 113.
    Elliot TR, Barclay-Smith E: Antiperistalsis and other muscular activities of the colon. J Physiol London 31:272–304, 1904Google Scholar
  114. 114.
    Fukai K, Fukuda H: The intramural pelvic nerves in the colon of dogs. J Physiol London 354:89–98, 1984Google Scholar
  115. 115.
    Schmidt CA: Distribution of vagus and sacral nerves to the large intestine. Proc Soc Exp Biol (NY) 30:739–740, 1933Google Scholar
  116. 116.
    Hultén L, Jodal M: Extrinsic nervous control of colonic motility. Acta Physiol Scand Suppl 335:21–38, 1969Google Scholar
  117. 117.
    Schlitt RJ, Hinton JW: Response of the distal colon to external stimuli. Surg Gynecol Obstet, 92:223–230, 1951Google Scholar
  118. 118.
    Rostad H: Colonic motility in the cat. II. Extrinsic nervous control. Acta Physiol Scand 89:91–103, 1973Google Scholar
  119. 119.
    Fukuda H, Fukai K: Fibers in the anastomotic branches connecting the bilateral pelvic rectal plexuses of the dog. Jpn J Physiol 35:867–870, 1985Google Scholar
  120. 120.
    de Groat WC, Krier J: Preganglionic c-fibres: A major component of the sacral autonomic outflow to the colon of the cat. Pflügers Arch 359:171–176, 1975Google Scholar
  121. 121.
    Sjöqvist A, Hellström PM, Jodal M, Lundgren O: Neurotransmitters involved in the colonic contraction and vasodilation elicited by activation of the pelvic nerves in the cat. Gastroenterology 86:1481–1487, 1984Google Scholar
  122. 122.
    Klee P: Der Einfluss der Splanchnicursreizung auf den Ablauf der Verdauungsbewegungen. Pflügers Arch Ges Physiol 154:552–570, 1913Google Scholar
  123. 123.
    de Groat WC, Krier J: The central control of the lumbar sympathetic pathway to the large intestine of the cat. J Physiol London 289:449–468, 1979Google Scholar
  124. 124.
    Burnstock G, Costa M: Adrenergic Neurons. London, Chapman & Hall, 1975Google Scholar
  125. 125.
    Fasth S, Hultén L, Nordgren S, Zeitlin IJ: Studies on the atropine-resistant sacral parasympathetic vascular and motility responses in the cat colon. J Physiol London 311:421–429, 1981Google Scholar
  126. 126.
    Fasth S, Hultén L, Nordgren S: Evidence for a dual pelvic nerve influence on large bowel motility in the cat. J Physiol London 298:159–169, 1980Google Scholar
  127. 127.
    Furness BJ, Costa M: The Enteric Nervous System. Edinburgh, Churchill Livingstone, 1987Google Scholar
  128. 128.
    Gabella G: Structure of muscles and nerves in the gastrointestinal tract.In Physiology of the Gastrointestinal Tract. LR Johnson (ed). New York, Raven Press, 1981Google Scholar
  129. 129.
    Christensen J, Stiles MJ, Rick GA, Sutherland J: Comparative anatomy of the myenteric plexus of the distal colon in eight mammals. Gastroenterology 86:706–713, 1984Google Scholar
  130. 130.
    Iljina WJ, Lawrentjew BJ: Zur Lehre von der Cytoarchitektonik des peripherischen autonomen Nervensystems. III. Ganglien des Rektums und ihre Beziehungen zu dem sakralen Parasympathikus. Z Mikrosk-Anat Forsch 30:530–542, 1932Google Scholar
  131. 131.
    Fan WW: Histological studies of sensory nerves in the sigmoid and rectum. Arch Jpn Chir 24:567–580, 1955Google Scholar
  132. 132.
    Lee IM The distribution of the myelinated nerves in the colon of the dog. Arch Jpn Chir 25:263–269, 1956Google Scholar
  133. 133.
    Stache W: Über die in der Dickdarmwand, aszendierenden Nerven des Plexus pelvinus und die Grenze, der vagalen und sakralllparasympathischen Innervation. Z Mikrosk-Anat Forsch 84:65–90, 1971Google Scholar
  134. 134.
    Sanders KM, Smith TK: Motoneurones of the submucous plexus regulate electrical activity of the circular muscle of canine proximal colon. J Physiol 380:293–310, 1986Google Scholar
  135. 135.
    Burnstock G, Campbell G, Rand MJ: The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol London 182:504–562, 1966Google Scholar
  136. 136.
    Semba T, Mizonishi T: Atropine-resistant excitation of motility of the dog stomach and colon induced by stimulation of the extrinsic nerves and their centers. Jpn J Physiol 28:239–248, 1978Google Scholar
  137. 137.
    Furness JB: An electrophysiological study of the innervation of the smooth muscle of the colon. J Physiol London 205:549–562, 1969Google Scholar
  138. 138.
    Furness JB: The presence of inhibitory nerves in the colon after sympathetic denervation. Eur J Pharmacol 6:349–352, 1969Google Scholar
  139. 139.
    Burnstock G: Purinergic nerves. Pharmacol Rev 34:509–581, 1979Google Scholar
  140. 140.
    Fahrenkrug J, Haglund U, Jodal M, Lundgren O, Olbe, L, Schaffalitzky de Muckadell OB: Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: Possible physiological implications. J Physiol London 284:291–305, 1978Google Scholar
  141. 141.
    Furness JB, Costa M: The nervous release and the action of substances which affect intestinal muscle through neither adrenoreceptors and cholinoreceptors. Phil Trans R Soc London B 265:123–133, 1973Google Scholar
  142. 142.
    Furness JG, Costa M, Llewellyn-Smith IJ: Branching patterns and projections of enteric neurons containing different putative transmitters. Peptides 2(suppl 2):119–122, 1981Google Scholar
  143. 143.
    Larsson L-I, Fahrenkrug J, Schaffalitzky de Muckadell O, Sundler F, Häkanson R, Rehfeld JF: Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci USA 73:3197–3200, 1976Google Scholar
  144. 144.
    Campbell G: Nerve-mediated excitation of the taenia of the guinea-pig caecum. J Physiol London 185:148–159, 1966Google Scholar
  145. 145.
    Bennett MR: Transmission from intramural excitatory nerves to the smooth muscle cells of the guinea-pig taenia coli. J Physiol London 185:132–147, 1966Google Scholar
  146. 146.
    Brookes SJH, Ewart WR, Wingate DL: Intracellular recordings from myenteric neurones in the human colon. J Physiol London 390:305–318, 1987Google Scholar
  147. 147.
    Maruyama T: Two types of spike generation of human Auerbach's plexus cells in culture. Neurosci Lett 25:143–148, 1981Google Scholar
  148. 148.
    Furukawa K, Taylor GS, Bywater RAR: An intracellular study of myenteric plexus of duodenum in the guinea-pig. J Neurophysiol 55:1395–1406, 1986Google Scholar
  149. 149.
    Wade PR, Wood JD: Synaptic behavior of myenteric neurons in guinea pig distal colon Am J Physiol (Gastrointest Liver Physiol 18). 255:G184-G190, 1988Google Scholar
  150. 150.
    Wade PR, Wood JD: Electrical behavior of myenteric neurons in guinea pig distal colon. Am J Physiol (Gastrointest Liver Physiol 17) 254:G522-G530, 1988Google Scholar
  151. 151.
    Lundberg JM, Hokfelt T, Anggard A, Uvnas-Wallensten K, Brimijoin S, Brodin E, Fahrenkrug J: Peripheral peptide neurons: Distribution, axonal transport, and some aspects on possible function.In Neural Peptides and Neuronal Communication. M Costa and M Trabucchi (eds). New York, Raven 1980Google Scholar
  152. 152.
    Llewellyn-Smith LJ, Furness JB, Murphy R, O'Brien PE, Costa M: Substance P-containing nerves in the human small intestine. Gastroenterology 86:421–435, 1984Google Scholar
  153. 153.
    Koch TR, Go VLW: Regulatory peptides and the large bowel and hindgut apudomas.In Diseases of the Colon, Rectum and Anal Canal. JB Kirsner and RG Shorter (eds). Baltimore, Williams & Wilkins, 1988Google Scholar
  154. 154.
    Korman LY, Sayadi H, Bass B, Moody TW, Harmon JW: Distribution of vasoactive intestinal polypeptide and substance P receptors in human colon and small intestine. Dig Dis Sci 34:1100–1108, 1989Google Scholar
  155. 155.
    Ekblad E, Ekman R, Hakanson R, Sundler F: Projections of peptide-containing neurons in rat colon. Neuroscience 27:655–674, 1988Google Scholar
  156. 156.
    Grider JR, Makhlouf GM: Colonic peristaltic reflex: Identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol (Gastrointest Liver Physiol) 251(14):G40-G45, 1986Google Scholar
  157. 157.
    Wienbeck M: The electrical activity of the cat colon in vivo. II. The effects of bethanechol and morphine. Res Exp Med 158:280–287, 1972Google Scholar
  158. 158.
    Snape WJ Jr, Cohen S: Effect of bethanechol, gastrin I, or cholecystokinin on myoelectrical activity. Am J Physiol 236(4):E458-E463, 1979Google Scholar
  159. 159.
    Sarna SK Cyclic motor activity; migrating motor complex: 1985. Gastroenterology 89:832–844, 1985 (also p 218)Google Scholar
  160. 160.
    Lee CY: Adrenergic receptors in the intestine. Smooth Muscle. E Bülbring, Brading, Jones, and T Tomita (eds). London, Arnold 1970Google Scholar
  161. 161.
    Furness JB, Costa M: The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:1–51, 1974Google Scholar
  162. 162.
    Beani L, Bianchi C, Crema A: The effect, of catecholamines and sympathetic stimulation on the release of acetylcholine from the guinea-pig colon. Br J Pharmacol 36:1–17, 1969Google Scholar
  163. 163.
    Langer SZ: Commentary: Presynaptic, regulation of catecholamine release.In Biochemical Pharmacology. Pergamon Press, 1974Google Scholar
  164. 164.
    Schaumann W: Zusammenhänge swischen der Wirkung der Analgetica und Sympathicoomimetica auf den Meerscheweinchen Dünndarm. Arch Exp Pathol Pharmakol 233:112–124, 1958Google Scholar
  165. 165.
    Llewellyn-Smith IJ, Furness JB, O'Brien PE, Costa M: Noradrenergic nerves in human small intestine. Gastroenterology 87:513–529, 1984Google Scholar
  166. 166.
    Ek B, Lundgren B: Characterization of the β-adrenergic inhibition of motility in cat colon strips. Eur J Pharmacol 77:25–31, 1982Google Scholar
  167. 167.
    Lyrenäs E: Beta adrenergic influence on esophageal and colonic motility in man. Scand J Gastroenterol. 20(suppl 116): 1–48, 1985Google Scholar
  168. 168.
    Gillespie JS, Khoyi MA: The site and receptors responsible for the inhibition by sympathetic nerves of intestinal smooth muscle and its parasympathetic motor nerve. J Physiol London 267:767–789, 1977Google Scholar
  169. 169.
    Kosterlitz HW, Lydon RJ, Watt AJ: The effects of adrenaline and isoprenaline in inhibitory alpha-and betaadrenoceptors in the longitudinal muscle of the guinea pig ileum. Br J Pharmacol 39:398–413, 1970Google Scholar
  170. 170.
    Lyrenäs E, Abrahamsson H, Dotevall G: Effects of β-adrenoceptor stimulation on rectosigmoid motility in man. Dig Dis Sci 30:536–540, 1985Google Scholar
  171. 171.
    Abrahamsson H, Lyrenäs E, Dotevall G: Effects of betadrenoceptor blocking drugs on human sigmoid colonic motility. Dig Dis Sci 28:590–594, 1983Google Scholar
  172. 172.
    Esser MJ, Mahoney JL, Robinson JC, Cowles VE, Condon RE: Effects of adrenergic agents on colonic motility. Surgery 102(2):416–423, 1987Google Scholar
  173. 173.
    Kurian SS, Ferri G-L, De Mey J, Polak JM: Immunocytochemistry of serotonin-containing nerves in the human gut. Histochemistry 78:523–529, 1983Google Scholar
  174. 174.
    Legay C, Saffrey MJ, Burnstock G: Coexistence of immunoreactive substance P and serotonin in neurones of the gut. Brain Res 302:379–382, 1984Google Scholar
  175. 175.
    Gershon MD, Dreyfus CF, Pickel VM, Joh TH, Reis DJ: Serotonergic neurons in the peripheral nervous system. Proc Natl Acad Sci USA 74:3086–3089, 1977Google Scholar
  176. 176.
    Costa M, Furness JB: The sites of action of 5-hydroxytryptamine in nerve-muscle preparations from the guineapig small intestine and colon. Br J Pharmacol 65:237–248, 1979Google Scholar
  177. 177.
    Furness JB: Secondary excitation of intestinal smooth muscle. Br J Pharmacol 41:213–226, 1971Google Scholar
  178. 178.
    Gershon MD: Biochemistry and physiology of serotonergic transmission.In Handbook of Physiology. Brookhart (ed). Bethesda, American Physiological Society, 1977Google Scholar
  179. 179.
    Misiewicz JJ, Waller SL, Eisner M:, Motor responses of human gastrointestinal tract to 5-hydroxytryptamine in vivo and in vitro. Gut 7:208–216, 1966Google Scholar
  180. 180.
    Fink S, Friedman G: The differential effect of drugs on the proximal and distal colon. Am J Med 28:534–540, 1960Google Scholar
  181. 181.
    Ramorino ML, Casale C, Amoruso M, Arrullani P, Ammaturo MV: In Acta Tertii Conventus Medicinae Internae Hungarici. Gastroenterologia 733–737 1965Google Scholar
  182. 182.
    Bradley PB, Engel G, Feniuk W, Fozzard JR, Humphrey PP Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR: Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol. 25:563–567, 1986Google Scholar
  183. 183.
    Gaddum JH, Picarelli ZP: Two kinds of tryptamine receptor. Br J Pharmacol Chemother 12:323–328, 1957Google Scholar
  184. 184.
    Peroutka SJ, Snyder SH: Multiple serotonin receptors: Differential binding of [3H]spiroperidol. Mol Pharmacol 16:687–699, 1979Google Scholar
  185. 185.
    Mawe GM, Branchek TA, Gershon MD: Peripheral neural serotonin receptors: Identification and characterization with specific antagonists and agonists. Proc Natl Acad Sci USA 83:9799–9803, 1986Google Scholar
  186. 186.
    Dumuis A, Sebben M, Bockaert J: The gastrointestinal prokinetic benzamide derivatives are agonists at the nonclassical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurons. Naunyn-Schmiedeberg's Arch Pharmacol 340:403–410, 1989Google Scholar
  187. 187.
    Fozard JR, Mobarok A, Newgrosh G: Blockage of serotonin receptors on autonomic neurones by (−)-cocaine and some related compounds. Eur J Pharmacol 59:195–210, 1979Google Scholar
  188. 188.
    Richardson BP, Engel G, Donatsch P, Stadler PA: Identification of serotonin M-receptor subtypes and their specific blockage by a new class of drugs. Nature 316:126–131, 1985Google Scholar
  189. 189.
    Fozard JR: Neuronal 5-HT receptors in the periphery. Neuropharmacology 23:1473–1486, 1984Google Scholar
  190. 190.
    Hesketh PJ, Murphy WK, Lester EP, Gandara DR, Khojasteh A, Tapazoglou E, Sartiano GP, White DR, Werner K, Chubb JM: GR 38032F (GR-C507/75): A novel compound effective in the prevention of acute cisplatin-induced emesis J Clin Oncol 7(6):700–705, 1989Google Scholar
  191. 191.
    Kris MG, Gralla RJ, Clark RA, Tyson LB: Dose-ranging evaluation of the serotonin antagonist GR-C507/75 (GR38032F) When used as an antiemetic in patients receiving anticancer chemotherapy. J Clin Oncol 6(4):659–662, 1988Google Scholar
  192. 192.
    Cohen ML, Bloomquist W, Gidda JS, Lacefield W: LY277359 maleate: A potent and selective 5-HT3 receptor antagonist without gastroprokinetic activity. J Pharmacol Ex Ther 254(1):350–355, 1990Google Scholar
  193. 193.
    Buchheit KH, Costall B, Engel G, Gunning SJ, Naylor RJ Richardson BP: 5-Hydroxytryptamine receptor antagonist by metoclopramide and ICS 205-930 in the guinea-pig leads to enhancement of contractions of stomach muscle strips induced by electrical field stimulation and facilitation of gastric emptyingin vivo. J Pharm Pharmacol 37:664–667, 1985Google Scholar
  194. 194.
    Costall B, Gunning SJ, Naylor, RJ, Tyers MB: The effect of GR388032F, novel 5-HT3-receptor antagonist on gastric emptying in the guinea pig. Br J Pharmacol 91:263–264, 1987Google Scholar
  195. 195.
    Horowitz M: Effect of ICS 205-930 (a specific 5HT3 receptor antagonist) on gastric emptying of a solid meal in normal subjects. Gut 29:1249–1252, 1988Google Scholar
  196. 196.
    Talley NJ, Phillips SF, Haddad A, Miller LJ, Twomey C, Zinsmeister AR, MacCarty RL, Ciociola A: GR 38032F (Ondansetron), A selective 5HT3 receptor antagonist, slows colonic transit in healthy man. Dig Dis Sci 35(4):477–480, 1990Google Scholar
  197. 197.
    Gore S, Gilmore IT, Haigh CG, Morris AI: Specific 5-hydroxytryptamine receptor (type 3) antagonist GR 38032F slows colonic transit. Gut 30:A713, 1989 (abstract)Google Scholar
  198. 198.
    Lanfranchi GA, Marzio L, Cortini C, Osset EM: Motor effect of dopamine on human sigmoid colon. Am J Dig Dis 23:257–263, 1978Google Scholar
  199. 199.
    Wiley J, Owyang C: Dopaminergic modulation of rectosigmoid motility: Action of dompridone. J Pharmacol Exp Ther 242(2):548–551, 1987Google Scholar
  200. 200.
    Douglas WW, Feldberg W, Paton WDM, Schachter M: Distribution of histamine and substance P in the wall of dogs digestive tract. J Physiol London 115:163–176, 1951Google Scholar
  201. 201.
    Pernow B: Substance P distribution in the digestive tract. Acta Physiol Scand 24:97–102, 1951Google Scholar
  202. 202.
    Fox JET, Daniel EE, Jury J, Fox AE, Collins SM: Sites and mechanisms of action of neuropeptides on canine gastric motility, differin vivo andin vitro. Life Sci 33:817–825, 1983Google Scholar
  203. 203.
    Bartho L, Holzer P, Donnerer J, Lembeck F: Evidence for the involvement of substance P in the atropine-resistant peristalsis of the guinea pig ileum. Neurosci Lett 21:69–74, 1982Google Scholar
  204. 204.
    Mayer EA, Van Deventer G, Elashoff J, Khawaja S, Walsh JH: Characterization of substance P effects on canine antral muscle. Am J Physiol (Gastrointest Liver Physiol 14) 251:G140-G146, 1986Google Scholar
  205. 205.
    Pernow B: Studies on substance P. Purification, occurrence and biological actions. Acta Physiol Scand Suppl 105:1–90, 1953Google Scholar
  206. 206.
    Koelbel CBM, Mayer EA, Reeve JRJ, Snape WJJ, Patel A, Ho FJ: Involvement of substance, P in noncholinergic excitation of rabbit colonic muscle. Am J Physiol Gastrointest Liver Physiol 256(19):G246-G253, 1989Google Scholar
  207. 207.
    Franco R, Costa M, Furness JB: Evidence for the release of endogenous substance P from intestinal nerves. Naunyn-Schmiedeberg's Arch Pharmacol 306:195–201, 1979Google Scholar
  208. 208.
    Wade PR, Wood JD: Actions of serotonin and substance P on myeteric neurons of guinea-pig distal colon. Eur J Pharmacol 148:1–8, 1988Google Scholar
  209. 209.
    Bryant MG, Polak JM, Modlin I, Bloom SR, Albuquerque RH, Pearse AGE: Possible dual role for vasoactive intestinal peptide in the digestive tract of cats. Gastroenterology 79:837–843, 1976Google Scholar
  210. 210.
    Lluis F, Thompson JC: Neuroendocrine potential of the colon and the rectum. Gastroenterology 94:832–844, 1988Google Scholar
  211. 211.
    Chayvialle JA, Miyata M, Descos F, Rayford PL, Thompson JC: Physiological observations on vasoactive intestinal peptide in the digestive tract.In Vasoactive Intestinal Peptide. S Said (ed). New York, Raven, 1982Google Scholar
  212. 212.
    Larsson L-I, Fahrenkrug J, Schaffalitzky de Muckadell O, Sundler F, Häkanson R, Rehfeld JF: Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci USA 73:3197–3200, 1976Google Scholar
  213. 213.
    Jessen KR, Polak JM, Van Noorden S, Bloom SR, Burnstock G: Evidence that peptide-containing neurons connect the two ganglionated plexuses of the enteric nervous system. Nature 283:391, 1980Google Scholar
  214. 214.
    Eklund S, Jodal M, Lundgren O, Sjöqvist A: Effects of vasoactive intestinal polypeptide on blood flow, motility and fluid transport in the gastrointestinal tract of the cat. Acta Physiol Scand 105:461–468, 1979Google Scholar
  215. 215.
    Cohen ML, Landry AS: Vasoactive intestinal polypeptide: increased tone, enhancement of acetylcholine release, and stimulation of adenylate cyclase in intestinal smooth muscle. Life Sci 26:811–822, 1980Google Scholar
  216. 216.
    Burleigh DE, D'Mello A, Parks AG: Responses of isolated human internal anal sphincter to drugs and electrical field stimulation. Gastroenterology 77:484–490, 1979Google Scholar
  217. 217.
    Biancani P, Walsh J, Behar J: Vasoactive intestinal peptide: A neurotransmitter for relaxation of the rabbit internal anal sphincter. Gastroenterology 89:867–874, 1985Google Scholar
  218. 218.
    Rosell S, Rökaeus A: Actions and possible hormonal functions of circulating neurotensin. Clin Physiol 1:3–20, 1981Google Scholar
  219. 219.
    Orci L, Baetens O, Rufener C Brown M, Vale W, Guillemin R: Evidence for immunoreactive neurotensin in dog intestinal mucosa. Life Sci 19:559–562, 1976Google Scholar
  220. 220.
    Sundler F, Håkansson R, Hammer RA, Alumets J, Carraway R, Leeman SE, Zimmerman EA: Immunohistochemical localization of neurotensin in endocrine cells of the gut. Cell Tissue Res 178:313–321, 1977Google Scholar
  221. 221.
    Polak JM, Sullivan SN, Bloom SR, Buchan AMJ, Facer P, Brown MR, Pearse AGE: Specific localization of neurotensin to the N-cell in human intestine by radioimmunoassay and immunocytochemistry. Nature 270:183–184, 1977Google Scholar
  222. 222.
    Helmstaedter V, Fuerle GE, Forssmann WG: Ultrastructural identification of a new cell type-the N-cell as the source of neurotensin in the gut mucosa. Cell Tissue Res 184:445–452, 1977Google Scholar
  223. 223.
    Doyle H, Greeley GH Jr, Mate L, Sakamoto T, Townsend CM Jr, Thompson JC: Distribution of neurotensin in the canine gastrointestinal tract. Surgery 97:337–341, 1985Google Scholar
  224. 224.
    Mashford ML, Nilsson G, Rökaeus Å, Rosell. S: The effect of food ingestion on circulating neurotensin-like immunoreactivity (NTLI) in the human. Acta Physiol Scand 104:244–246, 1978Google Scholar
  225. 225.
    Besterman HS, Sarson DL, Blackburn AM, Cleary J, Pilkington TRE, Bloom SR: The gut hormone profile in morbid obesity and following jejunoileal bypass. Scand J Gastroenterol 13(suppl 49):15, 1978Google Scholar
  226. 226.
    Rosell S, Rokaeus A: The effect, of ingestion of amino acids, glucose and fat on circulating neurotensin-like immunoreactivity (NTLI) in man. Acta Physiol Scand 107:263–267, 1979Google Scholar
  227. 227.
    Thor K, Rosell S: Neurotensin increases colonic motility. Gastroenterology 90:27–31, 1986Google Scholar
  228. 228.
    Hellström PM, Nylander G, Rosell S: Effects of neurotensin on the transit of gastrointestinal contents in the rat. Acta Physiol Scand 115:239–2243, 1982Google Scholar
  229. 229.
    Kitabgi P, Vincent J-P: Neurotensin is a potent, inhibitor of guinea-pig colon contractile activity. Eur J Pharmacol 74:311–318, 1981Google Scholar
  230. 230.
    Larsson L-I, Rehfeld JF: Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218, 1979Google Scholar
  231. 231.
    Dinoso VP Jr Meshkinpour H, Lorber SH Gutierrez JG, Chey WY: Motor responses of the sigmoid colon and rectum to exogenous cholecystokinin and secretin. Gastroenterology 65:438–444, 1973Google Scholar
  232. 232.
    Harvey RJ, Read AE: Effect of cholecystokinin on colonic motility and symptoms in patients with the irritable-bowel syndrome. Lancet 1:7793–7795, 1973Google Scholar
  233. 233.
    Mangel AW: Potentiation of colonic contractility to cholecystokinin and other peptides. Eur J Pharmacol 100:285–290, 1984Google Scholar
  234. 234.
    Kellow JE, Miller LJ, Phillips SF, Haddad AC, Zinsmeister AR, Charboneau JW: Sensitivities of human jejunum, ileum, proximal colon, and gallbladder to cholecystokinin octapeptide. Am J Physiol Gastrointest Liver Physiol 252(15):G345-G356, 1987Google Scholar
  235. 235.
    Misiewicz JJ, Holdstock DJ, Waller SL: Motor responses of the human alimentary tract to near-maximal infusions of pentagastrin. Gut 8:463–469, 1967Google Scholar
  236. 236.
    Elde R, Hökfelt T, Johansson O, Schultzborg M, Efendie S, Luft R: Cellular localization of somatostatin. Metabolism 27 (suppl 1):1151–1160, 1978Google Scholar
  237. 237.
    Arnold R, Lankisch PG: Somatostatin and the gastrointestinal tract. Gastroenterology 9:733–753, 1980Google Scholar
  238. 238.
    Furness JB, Costa M: Actions of somatostatin on excitatory and inhibitory nerves in the intestine. Eur J Pharmacol 56:69–74, 1979Google Scholar
  239. 239.
    Grider JR, Arimura A, Makhlouf GM: Role of somatostatin neurons in intestinal peristalsis: Facilitatory interneurons in descending pathways. Am J Physiol (Gastrointest Liver Physiol) 253 (16):G434-G438, 1987Google Scholar
  240. 240.
    Burakoff R, Nastos E, Won S: Effects of PGF2 and of indomethacin on rabbit small and large intestinal motilityin vivo. Am J Physiol (Gastrointest Liver Physiol) 258(21):G231-G237, 1990Google Scholar
  241. 241.
    Ishizawa M, Miyazaki E: Effect of prostaglandin F2 on propulsive activity of the isolated segmental colon of the guinea-pig. Prostaglandins 10(5):759–768, 1975Google Scholar
  242. 242.
    Weinbeck M, Sperling T: The effects of prostaglandins F2 and E2 on the motility of the cat colon in vitro. Z Gastroenterol 22:580–585, 1984Google Scholar
  243. 243.
    Staumont G, Fioramonti J, Frexinos J, Bueno L: Changes in colonic motility induced by sennosides in dogs: Evidence of a prostaglandin mediation. Gut 29:1180–1187, 1988Google Scholar
  244. 244.
    Hunt RH, Dilawari JB, Misiewicz JJ: The effect of intravenous prostaglandin F2 and E2 on the motility of the sigmoid colon. Gut 16:47–49, 1975Google Scholar
  245. 245.
    Schultzberg M, Hokfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S: Distribution of peptide-and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/ cholecystokinin, neurotensin and dopamine β-hydroxylase. Neurosci 5:689–744, 1980Google Scholar
  246. 246.
    Mulderry PK, Ghatei MA, Bishop AE, Allen YS, Polak JM, Bloom SR: Distribution and chromatographic characterisation of CGRP-like immunoreactivity in the brain and gut of the rat. Regul Pept 12:133–143, 1985Google Scholar
  247. 247.
    Bishop AE, Polak JM, Bauer FE, Christofides ND, Carlei F, Bloom SR: Occurrence and distribution of a newly discovered peptide, galanin, in the mammalian enteric nervous system. Gut 27:849–857, 1986Google Scholar
  248. 248.
    Dockray GJ, Vaillant C, Walsh JH: The neuronal origin of bombesin like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4:1561–1568, 1979Google Scholar
  249. 249.
    Namba M, Ghatei MA, Bishop AE, Gibson SJ, Mann DJ, Polak JM, Bloom SR: Presence of neuromedin B-like immunoreactivity in the brain and gut of rat and guinea-pig. Peptides 6:257–263, 1985Google Scholar
  250. 250.
    Tatemoto K: Neuropeptide Y: Complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 79:5485–5489, 1982Google Scholar
  251. 251.
    El-Salhy M, Grimelius L, Wilander E, Ryberg B, Terenius I, Lundberg JM, Tatemoto K: Immunocytochemical identification of polypeptide YY (PYY) cells in the human gastrointestinal tract. Histochemistry 77:15–23, 1983Google Scholar
  252. 252.
    Buffa R, Capella C, Fontana P, Usellini I, Solica E: Types of endocrine cells in the human colon and rectum. Cell Tissue Res 192:227–240, 1978Google Scholar
  253. 253.
    Koch TR, Carney JA, Go L, Go VLW: Idiopathic chronic constipation is associated with decreased colonic vasoactive intestinal peptide. Gastroenterology 94:300–310, 1988Google Scholar
  254. 254.
    Christofides ND, Yiangou Y, Aarons E, Ferri G-L, Tatemoto K, Polak JM, Bloom SR: Radioimmunoassay and intramural distribution of PHI-IR in human intestine. Dig Dis Sci 28:507–512, 1983Google Scholar
  255. 255.
    Dent J, Dodds WJ, Sekiguchi T, Hogan WJ, Arndorfer RC: Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology 84:453–460, 1983Google Scholar
  256. 256.
    Itoh Z, Honda R, Aizawa I, Takeuchi S, Hiwatashi K, Couch EF: Interdigestive motor activity of the lower esophageal sphincter in the conscious dog. Am J Dig Dis 23:239–247, 1978Google Scholar
  257. 257.
    Code CF, Marlett JA: The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol London 246:289–309, 1975Google Scholar
  258. 258.
    Szurszewski JH: A migrating electric complex of the canine small intestine. Am J Physiol 217:1757–1763, 1969Google Scholar
  259. 259.
    Honda R, Toouli J, Dodds WJ, Sarna S, Hogan WJ, Itoh Z: Relationship of sphincter of Oddi spike-bursts to gastroin-testinal myoelectric activity in conscious opossums. J Clin Invest 69:770–778, 1982Google Scholar
  260. 260.
    Matsumoto T, Sarna SK, Condon RE, Dodds WJ, Mochinaga N: Canine gallbladder cyclic motor activity. Am J Physiol (Gastrointest Liver Physiol 18) 255:G409-G416, 1988Google Scholar
  261. 261.
    Quigley EMM, Phillips SF, Dent J: Distinctive patterns of interdigestive motility at the canine ileocolonic junction. Gastroenterology 87:836–844, 1984Google Scholar
  262. 262.
    Orkin BA, Hanson RB, Kelly KA: The rectal motor complex. J Gastrointest Motil 1(1):5–8, 1989Google Scholar
  263. 263.
    Vantrappen GR, Peeters TL, Janssens J: The secretory component of the interdigestive migrating motor complex in man. Scand J Gastroenterol 14:663–667, 1979Google Scholar
  264. 264.
    Keane FB, DiMagno EP, Dozois RR, Go VLW: Relationships among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancreatic polypeptide, and motilin. Gastroenterology 78:310–316, 1980Google Scholar
  265. 265.
    Code CF, Schlegel J: The gastrointestinal interdigestive housekeeper: Motor correlates of the interdigestive myoelectric complex of the dog.In Proceedings of the Fourth International Symposium on GI motility. EE Daniel (ed). Vancouver, Mitchell Press, 1973Google Scholar
  266. 266.
    Schuurkes JAJ, Tukker JJ: The interdigestive colonic motor complex of the dog. Arch Int Pharmacodyn Ther 247:329–334, 1980Google Scholar
  267. 267.
    Narducci F, Bassotti G, Gaburri M, Morelli A: Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28:17–25, 1987Google Scholar
  268. 268.
    Ferre JP, Ruckebusch Y: Myoelectrical activity and propulsion in the large intestine of fed and fasted rats. J Physiol London 362:93–106, 1985Google Scholar
  269. 269.
    Cherbut C, Achard F, Denavit M, Roche M: Relationships between electromyographic ileal and colonic motility patterns in cats during fasting and feeding. Can J Vet Res 50:106–110, 1986Google Scholar
  270. 270.
    Sarna SK, Lang IM: Colonic motor response to a meal in dogs. Am J Physiol (Gastrointest Liver Physiol 20) 257:G830-G835, 1989Google Scholar
  271. 271.
    Karaus M, Sarna SK, Ammon HV, Wienbeck M: Effects of oral laxatives on colonic motor complexes in dogs. Gut 28:1112–1119, 1987Google Scholar
  272. 272.
    Sarna SK, Prasad KR, Lang IM: Giant migrating contractions of the canine cecum. Am J Physiol (Gastrointest Liver Physiol 17) 254:G595-G601, 1988Google Scholar
  273. 273.
    Sarna SK, Lang IM, Gleysteen JJ, Otterson MF: Central vs enteric neural control of small intestinal migrating motor complexes. Symp Nerves Gastrointest Tract 118, 1988Google Scholar
  274. 274.
    Sarna SK, Northcott P, Belbeck L: Mechanism of cycling of migrating myoelectric complexes: Effect of morphine. Am J Physiol (Gastrointest Liver Physiol 5) 242:G588-G595, 1982Google Scholar
  275. 275.
    Lang IM, Sarna SK, Condon RE: Gastrointestinal motor correlates of vomiting in the dog: Quantification and characterization as an independent phenomenon. Gastroenterology 90:40–47, 1986Google Scholar
  276. 276.
    Sarna SK: Giant migrating contractions and their myoelectric correlates in the small intestine. Am J Physiol (Gastrointest Liver Physiol 126) 253:G697-G705, 1987Google Scholar
  277. 277.
    Hardcastle JD, Mann CV: Study of large bowel peristalsis. Gut 9:412–520, 1968Google Scholar
  278. 278.
    Ritchie J: Mass peristalsis in the human colon after contact with oxyphenisatin. Gut 13:211–219, 1972Google Scholar
  279. 279.
    Hertz AF, Newton A: The normal movements of the colon in man. J Physiol London 47:57–65, 1913Google Scholar
  280. 280.
    Holzknecht G: Die normale Peristaltik des Kolon. Muench Med Wochenschr 56:2401–2403, 1909Google Scholar
  281. 281.
    Holdstock DJ, Misiewics JJ, Smith T, Rowlands EN: Propulsion (mass movements) in the human colon and its relationship to meals and somatic activity. Gut 11:91–99, 1970Google Scholar
  282. 282.
    Bassotti G, Gaburri M: Manometric investigation of highamplitude propagated contractile activity of the human colon. Am J Physiol 18:G660-G664, 1988Google Scholar
  283. 283.
    Soffer EE, Scalabrini P, Wingate DL: Prolonged ambulant monitoring of human colonic motility. Am J Physiol (Gastrointest Liver Physiol 20) 257:G601-G606, 1989Google Scholar
  284. 284.
    Macewen W: The function of the caecum and appendix. Lancet 8:995–1000, 1904Google Scholar
  285. 285.
    Bouvier M, Gonella J: Electrical activity from smooth muscle of the anal sphincteric area of the cat. J Physiol London 310:445–456, 1981Google Scholar
  286. 286.
    Monges H, Salducci J, Naudy B, Ranier F, Gonella J, Bouvier M: The electrical activity of the internal anal sphincter: a comparative study in man and cats.In Gastrointestinal motility. Christensen (ed). New York, Raven 1980Google Scholar
  287. 287.
    Bouvier M, Gonella J: Nervous control of the internal anal sphincter of the cat. J Physiol London 310:457–469, 1981Google Scholar
  288. 288.
    Melzack J, Porter NH: Studies on the reflex activity of the external sphincter ani in spinal man. Paraplegia 1:277–296, 1964Google Scholar
  289. 289.
    Read NW, Bortolo DCC, Read MG: Differences in anal function in patients with incontinence to solids and in patients with incontinence to liquids. Br J Surg 71:39–42, 1984Google Scholar
  290. 290.
    Hill JR, Kelley ML, Schlagel JF, Code CF: Pressure profile of the rectum and anus of healthy persons. Dis Colon Rectum 3:203–209, 1960Google Scholar
  291. 291.
    Schuster MM: The riddle of the sphincters. Gastroenterology 69:249–262, 1975Google Scholar
  292. 292.
    Louw JH: Congenital abnormalities of the rectum and anus. Curr Probl Surg 0:1–64, 1965Google Scholar
  293. 293.
    Scharli AL, Kiesewetier WB: Defecation and continence: Some new concepts. Dis Colon Rectum 13:81–106, 1970Google Scholar
  294. 294.
    Phillips SR, Edwards DAW: Some aspects of anal continence: and defaecation. Gut 6:396, 1965Google Scholar
  295. 295.
    Milligan ETC, Morgan CN: Surgical anatomy of the anal canal with special reference to anal fistulae. Lancet 2:1150–1156, 1934Google Scholar
  296. 296.
    Barnes PRH, Hawley PR, Preston DM, Lennard-Jones JE: Experience of posterior division of the puborectalis muscle in the management of chronic constipation. Br J Surg 72:475–477, 1985Google Scholar
  297. 297.
    Bartolo DCC, Read NW, Jarratt JA, Read MG, Donnelly TC, Johnson AG: Differences in anal sphincter function and clinical presentation in patients with pelvic floor descent. Gastroenterology 85:68–75, 1983Google Scholar
  298. 298.
    Mendeloff AI: Defecation.In Handbook of Physiology, Alimentary Canal IV. C Code (ed) Washington, Am Physiol Soc, pp 2140–2146, 1968Google Scholar
  299. 299.
    Parks AG, Porter NH, Melzak J: Experimental study of the reflex mechanism controlling the muscles of the pelvic floor. Dis Colon Rectum 5:407–414, 1962Google Scholar
  300. 300.
    Hurst AF: Constipation and Allied Intestinal Disorders London, Oxford University Press, 1919Google Scholar
  301. 301.
    Stephens FD: Malformations of the anus. Aust NZ J Surg 23:9, 1953Google Scholar
  302. 302.
    Shafik A: A new concept of the anatomy of the anal sphincter mechanism and the physiology of defecation. III. The longitudinal anal muscle: Anatomy and role in anal sphincter mechanism. Invest Urol 13:271–277, 1976Google Scholar
  303. 303.
    Denny-Brown D, Robertson Graeme EG: An investigation of the nervous control of defecation. Brain 58:256–310, 1935Google Scholar
  304. 304.
    Duthie HL, Gairns FW: Sensory nerve-endings and sensation in the anal region of man. Br J Surg 47:585–595, 1969Google Scholar
  305. 305.
    Clifton GL, Coggeshall RE, Vance WH, Willis WD: Receptive fields of unmyelinated ventral root afferent fibres. J Physiol London 256:573–600, 1976Google Scholar
  306. 306.
    Otterson MF, Sarna SK, Moulder JE: Effects of fractionated dose of ionizing radiation on small intestinal motor activity. Gastroenterology 95:1249–1257, 1988Google Scholar
  307. 307.
    Grundy D, Scratcherd T: Sensory afferents from the gastrointestinal tract.In Handbook of Physiology—The Gastrointestinal System. JD Wood (ed). Bethesda, American Physiological Society, pp 593–620, 1989Google Scholar
  308. 308.
    Leek BF: Abdominal visceral receptors.In Handbook of Sensory Physiology. Neil (ed). Berlin, Springer-Verlag, 1972Google Scholar
  309. 309.
    Leek BF: Abdominal and pelvic visceral receptors. Br Med Bull 33:163–168, 1977Google Scholar
  310. 310.
    Mei N: Recent studies on intestinal vagal afferent innervation. Functional implications. J Auton Nerv Syst 9:199–206, 1983Google Scholar
  311. 311.
    Mei N: Sensory structures in the viscera.In Progress in Sensory Physiology. D Ottoson (ed). Berlin, Springer-Verlag, 1983Google Scholar
  312. 312.
    Mei N: Intestinal chemosensitivity. Physiol Rev 65:211–237, 1985Google Scholar
  313. 313.
    Szurszewski JH, King BF: Physiology of prevertebral ganglia in mammals with special reference to inferior mesenteric ganglion.In Handbook of Physiology—The Gastrointestinal System I. JD Wood (ed). 1989 Bethesda, American Physiological Society, 1989, pp 519–592Google Scholar
  314. 314.
    Collman PI, Grundy D, Scratcherd T, Wach RA: Vagovagal reflexes to the colon of the anaesthetized ferret. J Physiol London 352:395–402, 1984Google Scholar
  315. 315.
    Weems WA, Szurszewski JH: Modulation of colonic motility by peripheral neural inpurs to neurons of the inferior mesenteric ganglion. Gastroenterology 73:273–278, 1977Google Scholar
  316. 316.
    King BF, Szurszewski JH: Mechanoreceptor pathways from the distal colon to the autonomic nervous system in the guinea-pig. J Physiol London 350:93–107, 1984Google Scholar
  317. 317.
    Jule Y, Szurszewski JH: Electrophysiology of neurones of the inferior mesenteric ganglion of the cat. J Physiol London 344:277–292, 1983Google Scholar
  318. 318.
    Jule Y, Krier J, Szurszewski JH: Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat. J Physiol London 344:293–304, 1983Google Scholar
  319. 319.
    Shu H-D, Love JA, Szurszewski JH: Effect of enkephalins on colonic mechanoreceptor synaptic input to inferior mesenteric ganglion. Am J Physiol (Gastrointest Liver Physiol 15) 252:G128-G135, 1987Google Scholar
  320. 320.
    Szurszewski JH, Weems WA: A study of peripheral input to and its control by post-ganglionic neurones of the inferior mesenteric ganglion. J Physiol London 256:541–556, 1976Google Scholar
  321. 321.
    Crowcroft PJ, Holman ME, Szurszewski JH: Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol London 219:443–461, 1971Google Scholar
  322. 322.
    Crowcroft PJ, Szurszewski JH: A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol London 219:421–441, 1971Google Scholar
  323. 323.
    Krier J, Schmalz PF, Szurszewski JH: Central innervation of neurones in the inferior mesenteric ganglion and of the large intestine of the cat. J Physiol London 332:125–138, 1982Google Scholar
  324. 324.
    Krier J, Szurszewski JH: Effect of substance P on colonic mechanoreceptors, motility, and sympathetic neurons. Am J Physiol (Gastrointest Liver Physiol 6) 243:G259-G267, 1982Google Scholar
  325. 325.
    Kreulen DL, Szurszewski JH: Nerve pathways in celiac plexus of the guinea pig. Am J Physiol (Endocrinol Metab Gastrointest Physiol 6) 237:E90-E97, 1979Google Scholar
  326. 326.
    Kreulen DL, Szurszewski JH: Reflex pathways in the abdominal prevertebral ganglia: Evidence for a colocolonic inhibitory reflex. J Physiol London 295:21–32, 1979Google Scholar
  327. 327.
    Job C, Lundberg A: Reflex exicitation of cells in the inferior mesenteric ganglion on stimulation of the hypogastric nerve. Acta Physiol Scand 26:366–382, 1952Google Scholar
  328. 328.
    Garry RC: The nervous control of the caudal region of the large bowel in the cat. J Physiol London 77:422–431, 1933Google Scholar
  329. 329.
    Kuntz A, Van Buskirk C: Reflex inhibition of bile flow and intestinal motility mediated through decentralized coeliac plexus. Proc Soc Exp Biol Med 46:519–523, 1941Google Scholar
  330. 330.
    Sjöqvist A, Hallerbäck B, Glise H: Reflex adrenergic inhibition of colonic motility in anesthetized rat caused by nociceptive stimuli of peritoneum. An α2-adrenoceptormediated response. Dig Dis Sci 30:749–754, 1985Google Scholar
  331. 331.
    Bulygin IAA: A consideration of the general principles of organization of sympathetic ganglia. J Auton Nerv Syst 8:303–330, 1983Google Scholar
  332. 332.
    Sarna SK, Ryan RP, Kubacki DM, Cowles VE: Effects of pelvic nerve section on colonic and cecal motor activity. Gastroenterology 95(3):887, 1988Google Scholar
  333. 333.
    Bayliss WM, Starling EH: The movements and innervation of the small intestine. J Physiol London 24:99–143, 1899Google Scholar
  334. 334.
    Costa M, Furness JB: The peristaltic reflex: An analysis of the nerve pathways and their pharmacology. Naunyn-Schmiedeberg's Arch Pharmacol 294:47–60, 1976Google Scholar
  335. 335.
    Crema A, Frigo GM, Lecchini S: A pharmacological analysis of the peristaltic reflex in the isolated colon of the guinea-pig or cat. Br J Pharmacol 39:334–345, 1970Google Scholar
  336. 336.
    Hirst GDS, McKirdy H: Nervous mechanism for descending inhibition in guinea-pig small intestine. J Physiol London 283:129–143, 1974Google Scholar
  337. 337.
    Kosterlitz HW, Pirie VW, Robinson JA: The mechanism of the peristaltic reflex in the isolated guinea pig ileum. J Physiol London 133:681–694, 1956Google Scholar
  338. 338.
    Gonda T, Daniel EE, Kostolanska F, Oki M, Fox JET: Neural control of canine colon motor function: studiesin vivo. Can J Physiol Pharmacol 66:350–358, 1988Google Scholar
  339. 339.
    Hukuhara T, Nakayama S, Nanba R: The role of the intrinsic mucosal reflex in the fluid transport through the denervated colonic loop. Jpn J Physiol 11:71–79, 1961Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Sushil K. Sarna
    • 1
    • 2
  1. 1.Departments of Surgery and Physiology Digestive Disease Research CenterMedical College of WisconsinMilwaukee
  2. 2.Surgical Research 151Zablocki VA Medical CenterMilwaukee

Personalised recommendations