Archives of Virology

, Volume 137, Issue 1–2, pp 149–155 | Cite as

Two nucleolar targeting signals present in the N-terminal part of Semliki Forest virus capsid protein

  • D. Favre
  • E. Studer
  • M. R. Michel
Brief Report


Here we show that the capsid (C) protein of Semliki Forest virus (SFV) contains two nucleolar targeting signals (NOS) responsible for the karyophilic properties of this protein. When conjugated to the non-karyophilic carrier protein bovine serum albumin (BSA), the two synthetic nuclear localization sequences (NLS) of the C protein transferred with equal efficiency the carrier protein into the nucleolus of both higher and lower eukaryotic target cells.


Albumin Infectious Disease Bovine Serum Albumin Target Cell Capsid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111: 807–816Google Scholar
  2. 2.
    Akey CW (1992) The nuclear pore complex: a macromolecular transporter. In: Nuclear trafficking Feldherr C (ed) Academic Press, New York, pp 31–70Google Scholar
  3. 3.
    Chelsky D, Ralph R, Jonak G (1989) Sequence requirements for synthetic peptidemediated translocation to the nucleus. Mol Cell Biol 9: 2487–2492Google Scholar
  4. 4.
    Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus rev: relevance of nucleolar localization to function. J Virol 64: 881–885Google Scholar
  5. 5.
    Dingwall C, Laskey RA (1991) Nuclear targeting sequences — a consensus? Trends Biochem Sci 16: 478–481Google Scholar
  6. 6.
    Favre D, Studer E, Nishimura T, Weitz M, Michel MR (1993) Semliki Forest virus capsid protein expressed by a baculovirus recombinant. Arch Virol 132: 307–319Google Scholar
  7. 7.
    Finlay DR, Newmeyer DD, Hartl PM, Horecka J, Forbes DJ (1989) Nuclear transport in vitro. J Cell Sci [Suppl]11: 225–242Google Scholar
  8. 8.
    Garcia-Bustos J, Heitman J, Hall MN (1991) Nuclear protein localization. Biochim Biophys Acta 1071: 83–101Google Scholar
  9. 9.
    Garoff H, Frischauf AM, Simons K, Lehrach H, Delius H (1980) The capsid protein of Semliki Forset virus has clusters of basic amino acids and prolines in its aminoterminal region. Proc Natl Acad Sci USA 77: 6376–6380Google Scholar
  10. 10.
    Goldfarb DS, Gariépy J, Schoolnik G, Kornberg RD (1986) Synthetic peptides as nuclear localisation signals. Nature 322: 641–644Google Scholar
  11. 11.
    Hatanaka M (1990) Discovery of the nucleolar targeting signal. BioEssays 12: 143–148Google Scholar
  12. 12.
    Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107: 291–308Google Scholar
  13. 13.
    Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33–38Google Scholar
  14. 14.
    Lanford RE, Feldherr CM, White RG, Dunham RG, Kanda P (1990) Comparison of diverse transport signals in synthetic peptide-induced nuclear transport. Exp Cell Res 186: 32–38Google Scholar
  15. 15.
    Lyons RH, Ferguson BQ, Rosenberg M (1987) Pentapeptide nuclear localization signal in adenovirus E1a. Mol Cell Biol 7: 2451–2456Google Scholar
  16. 16.
    Michel MR, Elgizoli M, Dai Y, Jakob R, Koblet H, Arrigo AP (1990) Karyophilic properties of Semliki Forest virus nucleocapsid protein. J Virol 64: 5123–5131Google Scholar
  17. 17.
    Nath ST, Nayak DP (1990) Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol 10: 4139–4145Google Scholar
  18. 18.
    Nelson M, Silver PA (1989) Context affects nuclear protein localization inSaccharomyces cerevisiae. Nol Cell Biol 9: 384–389Google Scholar
  19. 19.
    Newmeyer DD, Finlay DR, Forbes DJ (1986) In vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins. J Cell Biol 103: 2091–2102Google Scholar
  20. 20.
    Nigg EA, Baeuerle PA, Lührmann R (1991) Nuclear import-export: in search of signals and mechanisms. Cell 66: 15–22Google Scholar
  21. 21.
    Peters R (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 864: 305–359Google Scholar
  22. 22.
    Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615–623Google Scholar
  23. 23.
    Schlesinger S, Schlesinger MJ (1991) Replication ofTogaviridae andFlaviviridae. In: Fields B, Knipe DM (eds) Virology, 2nd edn. Raven Press, New York, pp 697–711Google Scholar
  24. 24.
    Shi Y, Thomas JO (1992) The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol 12: 2186–2192Google Scholar
  25. 25.
    Silver PA (1991) How proteins enter the nucleus. Cell 64: 489–497Google Scholar
  26. 26.
    Siomi H, Shida H, Nam SH, Nosaka T, Maki M, Hatanaka M (1988) Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell 55: 197–209Google Scholar
  27. 27.
    Stochaj U, Bossie MA, van Zee K, Whalen AM, Silver PA (1993) Analysis of conserved binding proteins for nuclear localization sequences. J Cell Science 104: 89–95Google Scholar
  28. 28.
    Wengler G, Würkner D, Wengler G (1992) Identification of a sequence element in the Alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. Virology 191: 880–888Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • D. Favre
    • 1
  • E. Studer
    • 1
  • M. R. Michel
    • 1
  1. 1.Institute of Medical MicrobiologyUniversity of BerneBerneSwitzerland

Personalised recommendations