Advertisement

Archives of Virology

, Volume 125, Issue 1–4, pp 161–176 | Cite as

Expression ofnef, vpu, CA and CD4 during the infection of lymphoid and monocytic cell lines with HIV-1

  • T. Schneider
  • P. Hildebrandt
  • K. Rokos
  • U. Schubert
  • W. Rönspeck
  • C. Grund
  • A. Beck
  • R. Blesken
  • G. Kulins
  • H. Oldenburg
  • G. Pauli
Original Papers

Summary

The expression of the capsid antigen (CA) and the two regulatory proteinsnef andvpu as well as the CD4 cell surface receptor was followed in HIV-infected lymphoid and promonocytic cells. In the lytic phase of infection all three viral proteins were expressed; production of these proteins coincided with the increase of CA antigen and infectious virus in culture supernatants and with prominent cytopathic effects. After selection of persistently infected cells, the number of lymphoid cells expressing detectable levels ofnef decreased to zero; the number of cells positive for CA ranged between 40 to 70%. In chronically infected promonocytic cellsnef andvpu expression was reduced to undetectable levels, whereas most of the cells accumulated CA intracellularly. Infectious cell free virus and CA in the supernatant of promonocytic cells had low titers. CD4 surface expression declined in all cell lines investigated before cell free virus was detectable.

Keywords

Infected Cell Culture Supernatant Viral Protein Surface Expression Lymphoid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad N, Venkatesan S (1988)Nef protein is a transcriptional repressor of HIV-1 LTR. Science 241: 1481–1485Google Scholar
  2. 2.
    Albert J, Bredeberg U, Chiodi F, Böttinger B, Fenyö EM, Norrby E, Biberfeld G (1987) A new human retrovirus of West African origin (SBL6669) and its relationship to HTLV-IV, LAV-II, and HTLV-IIIB. AIDS Res Hum Retroviruses 3: 3–10Google Scholar
  3. 3.
    Åsjö B, Ivhed I, Gidlund M, Fuerstenberg S, Fenyö EM, Nilsson K, Wigzell H (1987) Susceptibility to infection by the human immunodeficiency virus (HIV) correlates with T4 expression in an parental monocytoid cell line and its subclones. Virology 157: 359–365Google Scholar
  4. 4.
    Bachelerie F, Alcami J Hazan U, Israël N, Goud B, Arenzana-Seisdedos F, Virelizier J-L (1990) Constitutive expression of human immunodeficiency virus (HIV)nef protein in human astrocytes does not influence basal or induced HIV long terminal repeat activity. J Virol 64: 3059–3062Google Scholar
  5. 5.
    Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vézinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871Google Scholar
  6. 6.
    Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins form sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated Protein A. Anal Biochem 112: 195–203Google Scholar
  7. 7.
    Bröker M (1986) Vectors for regulated high-level expression of proteins fused to truncated forms ofEschericha coli β-galactosidase. Gene Anal Techn 3: 53–57Google Scholar
  8. 8.
    Bruce C, Buonocore L, Rose JK (1990) CD4 is retained in the endoplasmatic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 64: 5585–5593Google Scholar
  9. 9.
    Cheng-Mayer C, Jannello P, Shaw K, Luciw PA, Levy JA (1989) Differential effects ofnef on HIV replication: implications for viral pathogenesis in the host. Science 246: 1629–1632Google Scholar
  10. 10.
    Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by thevpu gene of HIV-1. Nature 334: 532–534Google Scholar
  11. 11.
    Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, MacDonald S, Pulford KAF, Stein H, Mason DY (1984) Immunoenzymatic labeling of monoclonal antibodies using complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complex). J Histochem Cytochem 32: 219–229Google Scholar
  12. 12.
    Cullen BR (1991) The positive effect of the negative factor. Nature 351: 698–699Google Scholar
  13. 13.
    Daniel MD, Letvin NL, King NW, Kannagi M, Seghal PK, Hunt RD, Kanki PJ, Essex M, Desrosiers RC (1985) Isolation of a T-cell tropic HTLV-III-like retrovirus from macaques. Science 228: 1201–1204Google Scholar
  14. 14.
    Delassus S, Cheynier R, Wain-Hobson S (1991) Evolution of human immunodeficiency virus type 1nef and long terminal repeat sequences over 4 years in vitro. J Virol 65: 225–231Google Scholar
  15. 15.
    Durda PJ, Leece B, Jenoski A, Rabin H, Fisher A, Wong-Staal F (1988) Characterization of murine monoclonal antibodies to HIV-1 induced by peptides. AIDS Res Human Retroviruses 4: 331–342Google Scholar
  16. 16.
    Franchini G, Ropert-Guroff M, Ghrayeb J, Chang NT, Wong-Staal F (1986) Cytoplasmic localization of the HTLV-III 3′-orf protein in cultured T-cells. Virology 155: 593–599Google Scholar
  17. 17.
    Garcia JV, Miller AD (1991) Serine phosphorylation independent downregulation of cell surface CD4 bynef. Nature 350: 508–511Google Scholar
  18. 18.
    Gelderblom H, Reupke H, Winkel T, Kunze R, Pauli G (1987) MHC-antigens: constituents of the envelope of human and simian immunodeficiency virus. Z Naturforsch 42: 1328–1334Google Scholar
  19. 19.
    Guy B, Kieny MP, Riviere Y, Peuch CL, Dott K, Girad M, Montagnier L, Lecocq JP (1987) HIV F/3′-orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330: 266–269Google Scholar
  20. 20.
    Guy B, Riviere Y, Dott K, Regnault A, Kieny MP (1990) Mutational analysis of the HIVnef protein. Virology 176:413–425Google Scholar
  21. 21.
    Hammes S, Dixon EP, Malim MH, Bryan MH, Cullen BR, Greene WC (1989)Nef protein of human imunodeficiency virus type 1: evidence against its role as a transcriptional inhibitor. Proc Natl Acad Sci USA 86: 9549–9553Google Scholar
  22. 22.
    Jabbar MA, Nayak DP (1990) Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope gylcoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane. J Virol 64: 6297–6304Google Scholar
  23. 23.
    Kestler HW, Ringler DJ, Kazuyasu M, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of thenef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662Google Scholar
  24. 24.
    Kikukawa R, Koyanagi Y, Harade S, Kobayashi N, Hatanaka M, Yamamoto N (1986) Differential susceptibility to the acquired immunodeficiency syndrome retrovirus in cloned cells of human leukemic T-cell line MOLT-4. J Virol 57: 1159–1162Google Scholar
  25. 25.
    Kim S, Ikeuchi K, Byrn R, Groopman J, Baltimore D (1989) Lack of a negative influence on viral growth by thenef gene of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86: 9544–9548Google Scholar
  26. 26.
    Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficency virus type 1-specific proteinvpu is required for efficent virus maturation and release. J Virol 64: 621–629Google Scholar
  27. 27.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256: 495–497Google Scholar
  28. 28.
    Kraus G, Werner A, Baier M, Binninger D, Ferdinand FJ, Norley S, Kurth R (1989) Isolation of human immunodeficiency virus-related simian immunodeficiency viruses from African green monkeys. Proc Natl Acad Sci USA 86: 2892–2896Google Scholar
  29. 29.
    Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–684Google Scholar
  30. 30.
    Laurent AG, Hovanessian AG, Riviere Y, Krust B, Regnault A, Montagnier L, Findeli A, Kieny MP, Guy B (1990) Production of a non-functionalnef protein in human immunodeficiency virus type 1-infected CEM cells. J Gen Virol 71: 2273–2281Google Scholar
  31. 31.
    Liu FT, Zinnecker M, Hamaska T, Katz DH (1979) New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates. Biochemistry 18: 690–697Google Scholar
  32. 32.
    Luciw PA, Cheng-Meyer C, Jay JA (1987) Mutational analysis of the human immunodeficiency virus: The orf-B region down-regulates virus replication. Proc Natl Acad Sci USA 84: 1434–1438Google Scholar
  33. 33.
    Montagnier L, Dauguet C, Axler C, Chamaret S, Gruest J, Nugeyre MT, Rey F, Barré-Sinoussi F, Chermannn JC (1984) A new type of retrovirus isolated from patients presenting with lymphadenopathy and acquired immune deficiency syndrome: structural and antigenic relatedness with equine infectious anaemia virus. Ann Virol 135E: 119–134Google Scholar
  34. 34.
    Niederman TMJ, Thielan BJ, Ratner L (1989) Human immunodeficiency virus type 1 negative factor is a transcriptional silencer. Proc Natl Acad Sci USA 86: 1128–1132Google Scholar
  35. 35.
    Niedrig M, Hinkula J, Weigelt W, L'Age-Stehr J, Pauli G, Rosen J, Wahren B (1989) Epitope mapping of monoclonal antibodies against human immunodeficiency virus type 1 structural proteins by using peptides. J Virol 63: 3525–3528Google Scholar
  36. 36.
    Niedrig M, Rabanus JP, L'Age-Stehr J, Gelderblom H, Pauli G (1988) Monoclonal antibodies directed against human immunodeficiency virus (HIV) gag proteins with specificity for conserved epitopes in HIV-1, HIV-2 and simian immunodeficiency virus. J Gen Virol 69: 2109–2114Google Scholar
  37. 37.
    Popovic M, Read-Connole E, Gallo RC (1984) T4 positive human neoplastic cell lines susceptible to and permissive for HTLV-III. Lancet 2: 1472–1473Google Scholar
  38. 38.
    Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patiens with AIDS and pre-AIDS. Science 224: 497–500Google Scholar
  39. 39.
    Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27: 493–497Google Scholar
  40. 40.
    Rieber EP, Rank G, Wirth S, Wilhelm M, Kopp E, Riethmüller G (1984) Modulation of T-cell functions by monoclonal “pan T-cell” antibodies not directed against the T-cell receptor complex. In: Reinherz EL, Haynes BF, Nadler LM, Bernstein JD (eds) Leucocyte typing II. Springer, Berlin Heidelberg New York, p 233Google Scholar
  41. 41.
    Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophorese for the separation of proteins in the range from 1 to 100kD. Anal Biochem 166: 368–379Google Scholar
  42. 42.
    Schneider T, Harthus H, Hildebrandt P, Niedrig M, Bröker M, Weigelt W, Beck A, Pauli G (1991) Epitopes of the HIV-1 negative factor (nef) reactive with murine monoclonal antibodies and human HIV-1 positive sera. AIDS Res Human Retroviruses 7: 37–44Google Scholar
  43. 43.
    Schneider T, Hildebrandt P, Rönspeck W, Weigelt W, Pauli G (1990) The antibody response to the HIV-1 specific “out” (vpu) protein: identification of an immunodominant epitope and correlation of antibody detectability to clinical stages. AIDS Res Human Retroviruses 6: 943–950Google Scholar
  44. 44.
    Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1,vpu and its 16-kilodalton product. Science 241: 1221–1223Google Scholar
  45. 45.
    Sundstrom C, Nilsson K (1976) Establishment and characterization of a human histocytic lymphoma cell line (U937). Int J Cancer 17: 565–577Google Scholar
  46. 46.
    Terwilliger EF, Cohen EA, Lu Y, Sodroski JG, Haseltine WA (1989) Functional role of human immunodeficiency virus type 1vpu. Proc Natl Acad Sci USA 86: 5163–5167Google Scholar
  47. 47.
    Terwilliger EF, Sodroski JG, Rosen GA, Halseltine WA (1986) Effects of mutations within the 3′-orf open reading frame region of human T-cell lymphotropic virus type III (HTLV-III/LAV) on replication and cytopathogenicity. J Virol 60: 754–760Google Scholar
  48. 48.
    Valentin A, Albert J, Fenyö EM, Åsjö B (1990) HIV-1 infection of normal human macrophage cultures: implication for silent infection. Virology 177: 790–794Google Scholar
  49. 49.
    Ziegler-Heitbrock HWL, Thiel E, Fütterer A, Herzog V, Wirtz A, Rietmüller G (1988) Establishment of a human cell line (MonoMac6) with characteristics of mature monocytes. Int J Cancer 41: 455–461Google Scholar
  50. 50.
    Zweig M, Samuel KP, Showalter SD, Bladen SV, DuBois GC, Latenberger JA, Hodge DR, Papas TS (1990) Heterogenity ofnef proteins in cells infected with human immunodeficiency virus type 1. Virology 179: 504–507Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. Schneider
    • 1
  • P. Hildebrandt
    • 1
  • K. Rokos
    • 1
  • U. Schubert
    • 4
  • W. Rönspeck
    • 2
  • C. Grund
    • 1
  • A. Beck
    • 1
  • R. Blesken
    • 3
  • G. Kulins
    • 3
  • H. Oldenburg
    • 3
  • G. Pauli
    • 1
  1. 1.AIDS-Zentrum am BundesgesundheitsamtRobert Koch-InstitutBerlinGermany
  2. 2.Biochrom Beteiligungs GmbH & CoBerlinGermany
  3. 3.Robert Koch-InstitutBerlinGermany
  4. 4.Institut für Medizinische Immunologie der CharitéHumboldt-UniversitätBerlinGermany

Personalised recommendations