Zeitschrift für Physik B Condensed Matter

, Volume 81, Issue 2, pp 299–303 | Cite as

Conductance noise spectrum of mesoscopic systems

  • László B. Kiss
  • János Kertész
  • János Hajdu


We investigate the shape as well as the size- and temperature-dependence of the conductance noise spectrum of a small system containing electrons and both fixed and mobile scatterers. If the number of mobile scatterers within a phase-coherent region is sufficiently large, the temporal variation of the conductance can be viewed as a random walk process limited by the universal conductance fluctuations, resulting in a practically Lorentzian power spectrum. We discuss the conditions under which the noise spectrum of a system consisting of many phase-coherent regions is either Lorentzian or 1/f-like. The temperature-dependence of the power spectrum is determined by the hopping mechanism and the variation of the phase breaking length. As a function of temperature the spectrum satisfies power law scaling relations with exponents depending on the dimension and the temperature range; the spectral intensity can both increase and decrease with decreasing temperature.


Spectroscopy Neural Network Temporal Variation Complex System Power Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webb, R.A., Washburn, S., Umbach, C.P., Laibowith, R.: Phys. Rev. Lett.54, 2696 (1985)Google Scholar
  2. 2.
    Meisenheimer, T.L., Giordano, N.: Phys. Rev. B39, 9929 (1989)Google Scholar
  3. 3.
    Alers, G.B., Weissman, M.B., Averback, R.S., Shyu, H.: Phys. Rev. B40, 900 (1989)Google Scholar
  4. 4.
    Scofield, J.H., Mantese, J.V., Webb, W.W.: Phys. Rev. B32, 736 (1985)Google Scholar
  5. 5.
    Birge, N.O., Golding, B., Haemmerle, W.H.: Phys. Rev. Lett.62, 195 (1989)Google Scholar
  6. 6.
    Koch, R.H.: Bull. Am. Phys. Soc.32, 542 (1987)Google Scholar
  7. 7.
    Feng, S., Lee, P.A., Stone, A.D.: Phys. Rev. Lett.56, 1960 (1986)Google Scholar
  8. 8.
    Weissman, M.B.: Phys. Rev. Lett.59, 1772 (1987)Google Scholar
  9. 9.
    Hershfield, S.: Phys. Rev. B37, 8557 (1988)Google Scholar
  10. 10.
    Feng, S.: Preprint (1989)Google Scholar
  11. 11.
    Feng, S., Lee, P.A.: Preprint (1990)Google Scholar
  12. 12.
    Al'tshuler, B.L., Spivak, B.Z.: JETP Lett.49, 773 (1989)Google Scholar
  13. 13.
    Al'tshuler, B.L.: JETP Lett.41, 648 (1985)Google Scholar
  14. 14.
    Lee, P.A., Stone, A.D.: Phys. Rev. Lett.55, 1622 (1985)Google Scholar
  15. 15.
    Al'tshuler, B.L., Spivak, B.Z.: JETP Lett.42, 447 (1986)Google Scholar
  16. 16.
    Dutta, P., Horn, P.M.: Rev. Mod. Phys.53, 497 (1981)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • László B. Kiss
    • 1
  • János Kertész
    • 1
  • János Hajdu
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKöln 41Germany

Personalised recommendations