Zeitschrift für Physik B Condensed Matter

, Volume 87, Issue 3, pp 265–270 | Cite as

Dimensional crossover in the layeredxy-model

  • A. Schmidt
  • T. Schneider
Original Contributions


Using the Monte-Carlo technique we studied the isotropic layeredxy-model. We concentrate on the fall of the transition temperatureT c , the behavior of the specific heat and the vortex density with reduced thickness. Our approximate Ginzburg-Landau treatment suggests that the drop ofT c resulting from the dimensional crossover is a combination of fluctuation and boundary effects.


Spectroscopy Vortex Neural Network State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson, D.R., in Domb, C., Lebowitz, J.L. (eds.): Phase transitions and critical phenomena 7, Chap. 1. London: Academic Press 1983Google Scholar
  2. 2.
    Hebard, A.F., Fiory, A.T.: Physica B109/110, 1637 (1982)Google Scholar
  3. 3.
    Wong, H.K., Ketterson, J.B.: J Low Temp. Phys63, 139 (1986)Google Scholar
  4. 4.
    Finotello, D., et al.: Phys. Rev. B41, 10994 (1990)Google Scholar
  5. 5.
    Hubbard, J.: Phys. Rev. Lett.3, 77 (1959)Google Scholar
  6. 6.
    Equation (7) forZ shows that the large positive eigenvalues ofP will be the most important values for the calculation. There-fore we can consider restricting ourselves to these important positive eigenvalues before making the Hubbard-Stratanovich transform. Thus we no longer need to shift the diagonal elements ofP Google Scholar
  7. 7.
    Kosterlitz, J.M.: J. Phys. C7, 1046 (1974)Google Scholar
  8. 8.
    Wolff, U.: Phys. Rev. Lett.62, 361 (1989); Nucl. Phys. B332, 759 (1989)Google Scholar
  9. 9.
    Ferrenberg, A.M., Swendsen, R.H.: Phys. Rev. Lett.63, 1195 (1989)Google Scholar
  10. 10.
    Binder, K.: Phys. Rev. Lett.47, 693 (1981); Z. Phys. B—Condensed Matter43, 119 (1981)Google Scholar
  11. 11.
    Landau, D.P., Pandey, R., Binder, K.: Phys. Rev. B39, 12302 (1989); Janke, W.: Phys. Lett. A148, 306 (1990)Google Scholar
  12. 12.
    Gupta, R., et al.: Phys. Rev. Lett.61, 1996 (1988)Google Scholar
  13. 13.
    Le Guillou, J.C., Zinn-Justin, J.: Phys. Rev. B21, 3976 (1980)Google Scholar
  14. 14.
    Shenoy, S.R.: Phys. Rev. B40, 5056 (1989)Google Scholar
  15. 15.
    Ami, S., Kleinert, H.: Phys. Rev. B33, 4692 (1986)Google Scholar
  16. 16.
    Kohring, G., Shrock, R.E., Wills, P.: Phys. Rev. Lett.57, 1358 (1986)Google Scholar
  17. 17.
    Schneider, T.: Z. Phys. B—Condensed Matter85 187 (1991)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Schmidt
    • 1
  • T. Schneider
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations