Monatshefte für Mathematik

, Volume 121, Issue 4, pp 353–379

Some results about the spectrum of commutative Banach algebras under the weak topology and applications

  • A. Ülger
Article

Abstract

LetA be a commutative Banach algebra with a nonempty spectrum ΣA. By “weak” we denote the relative weak topology induced on ΣA by σ(A*,A**). In this note we study some properties of the topological space (ΣA, weak) and present some applications of the results obtained and tools used to amenability, weakly compact homomorphisms, weakly compact subsets of the spectrum of the uniform algebras and to a characterization of the synthesizable ideals of the algebraA.

1991 Mathematics Subject Classification

46J05 46J15 46J99 46J20 43A15 

Key words

Spectrum amenability uniform algebra Gleason parts homomorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bonsall, F. F., Duncan, J.: Complete Normed Algebras. New York: Springer (1973).Google Scholar
  2. [2]
    Bourgain, J.:H is a Grothendieck space. Studia Math.74, 193–216 (1983).Google Scholar
  3. [3]
    De Vito, C.: Characterizations of those ideals inL 1(ℝ) which can be synthesized. Math. Ann.203, 171–173 (1973).Google Scholar
  4. [4]
    Duncan, J., Husseiniun, S. A. R.: The second dual of a Banach algebra. Proc. Roy. Soc. Edinb, Sec. A84, 309–325 (1979).Google Scholar
  5. [5]
    Dunford, N., Schwartz, J. T.: Linear Operators, Part 1. New York: Interscience Publ. 1958.Google Scholar
  6. [6]
    Eymard, P.: L'Algèbre de Fourier d'un groupe locallement compact. Bull. Soc. Math. France92, 181–236 (1964).Google Scholar
  7. [7]
    Forrest, B.: Arens regularity and discrete groups. Pacific J. Math151, 217–227 (1991).Google Scholar
  8. [8]
    Galé, J. E., Ransford, T. J., White, M. C.: Weakly compact homomorphisms. Trans. Amer. Math. Soc.331, 815–824 (1992).Google Scholar
  9. [9]
    Gourdeau, F.: Amenability of Banach Algebras. Math. Proc. Camb. Phil. Soc.105, 351–355 (1989).Google Scholar
  10. [10]
    Herz, C.: Harmonic Synthesis for subgroups. Ann. Inst. Fourier23, 91–123 (1973).Google Scholar
  11. [11]
    Hewitt, E., Zuckermann, H.: The ℓ1-algebra of a commutative semi-group. Trans. Amer. Math. Soc.83, 70–97 (1956).Google Scholar
  12. [12]
    Hoffman, F.: Bounded analytic functiions and Gleason Parts. Ann. of Math.86, 74–111 (1967).Google Scholar
  13. [13]
    Johnson, B.: Weakly compact homomorphisms between Banach algebras. Math. Proc. Camb. Phil. Soc.112, 157–163 (1992).Google Scholar
  14. [14]
    Jones, A. Ch., Lahr, D. Ch.: Weak and norm approximate identities are different. Pacific J. Math.72, 99–104 (1977).Google Scholar
  15. [15]
    Katznelson, Y.: An Introduction to Harmonic Analysis. New York: Dover Publ. 1976.Google Scholar
  16. [16]
    Kamowitz, H.: Compact operators of the form μc ϕ. Pacific J. Math.80, 205–211 (1979).Google Scholar
  17. [17]
    Khelemskii, A. Ya.: Flat Banach modules and amenable algebras. Trans. Moscow Math. Soc.47, 199–244 (1985).Google Scholar
  18. [18]
    Leibowitz, G. M.: Lectures on Complex Function Algebras. Glenview, Illinois: Scott, Foresman and Co. 1970.Google Scholar
  19. [19]
    Leinert, M.: Faltungoperatoren auf Gewissen Diskreten Gruppen. Studia Math.52, 149–158 (1974).Google Scholar
  20. [20]
    Paterson, A. T.: Amenability. Providence, R.I.: Amer. Math. Soc. 1988.Google Scholar
  21. [21]
    Ohno, S., Wada, J.: Compact homomorphisms on function algebras. Tokyo J. Math.4, 105–112 (1981).Google Scholar
  22. [22]
    Rosenthal, H. P. Projections onto translation-invariant subspaces ofL p(G). Mem. Amer. Math. Soc.63 (1966).Google Scholar
  23. [23]
    Stout, E. L.: The Theory of Uniform Algebras. New York: Bogden and Quigley Inc. Publ. 1971.Google Scholar
  24. [24]
    Ülger, A.: Arens Regularity and weakly compact bilinear forms. Proc. Amer. Math. Soc.101, 697–704 (1987).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. Ülger
    • 1
  1. 1.Department of MathematicsBo|>gazici UniversityBebek-IstanbulTurkey

Personalised recommendations