Zeitschrift für Physik B Condensed Matter

, Volume 65, Issue 1, pp 113–131 | Cite as

Bifurcations and the positiveP-representation

  • M. Dörfle
  • A. Schenzle
Article

Abstract

The role of quantum fluctuations in dynamical systems can be described conveniently in terms of quasi-probabilities, since this concept bears a strong but formal analogy to classical statistical mechanics. At a closer look, however, only the method of the positiveP-representation has the potential of associating a classical stochastic process with a nonlinear quantum mechanical problem. The doubling of phase space required by this concept not only introduces new and unphysical dimensions, but also doubles the dimensions of the attractors of the associated deterministic system. A focus of the classical process remains a focus in the extended phase space, but a limit cycle is turned into a two-dimensional manifold, which due to the analytic properties of the method is hyperbolic in nature and extends to infinity. A strange attractor with its broken dimensionality also doubles its dimensions, since the Lyapunov exponents of the deterministic evolution in the extended phase space come in pairs as well. The fluctuating forces distribute the probability density about the attractors. In case of a focus, the probability density remains confined to the neighbourhood of the point of attraction, while for a limit cycle the distribution continues to spread over the entire two-dimensional manifold and a stationary solution for the probability density in the doubled phase space does not exist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wigner, E.: Phys. Rev.40, 749 (1932)Google Scholar
  2. 2.
    Wigner, E.: Z. Phys. Chem. B19, 203 (1932)Google Scholar
  3. 3.
    Glauber, R.: Phys. Rev. Lett.10, 84 (1963)Google Scholar
  4. 4.
    Sudarshan, E.C.G.: Phys. Rev. Lett.10, 277 (1963)Google Scholar
  5. 5.
    Schenzle, A., Brand, H.: Phys. Rev. A20, 1628 (1979)Google Scholar
  6. 6.
    Schenzle, A., Graham, R.: Phys. Lett. A98, 319 (1983)Google Scholar
  7. 7.
    Drummond, P.D., Gardiner, C.W.: J. Phys. A13, 2353 (1980)Google Scholar
  8. 8.
    Gardiner, C.W. (ed.). Handbook of Stochastic Methods. In: Springer Series in Synergetics. Vol. 13. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  9. 9.
    Glauber, R.J.: Phys. Rev.131, 2766 (1963)Google Scholar
  10. 10.
    Kaplan, J., Yorke, J.: Functional differential equations and approximation of fixed points. In: Lecture Notes in Mathematics. Peitgen, H.-O., Walther, H.-O. (eds.), Vol. 730, p. 204. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  11. 11.
    Savage, C.M., Walls, D.F.: Opt. Acta30, 557 (1983)Google Scholar
  12. 12.
    Dörfle, M., Graham, R.: In: Optical instabilities. Boyd, R.W., Raymer, M.G., Narducci, L.M. (eds.). Cambridge: Cambridge University Press 1986Google Scholar
  13. 13.
    Drummond, P.D., McNeil, K.J., Walls, D.F.: Opt. Acta28, 211 (1981)Google Scholar
  14. 14.
    Mandel, P., Erneux, J.: Opt. Acta28, 7 (1982)Google Scholar
  15. 15.
    Walls, D.F., Carmichael, H.J.: Private communicationsGoogle Scholar
  16. 16.
    Schenzle, A., Dörfle, M.: (to be published)Google Scholar
  17. 17.
    Talkner, P.: Ann. Phys.167, 390 (1986)Google Scholar
  18. 18.
    Haken, H.: Light and matter Ic. laser theory. In: Handbuch der Physik. Vol. XXV/2c. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  19. 19.
    Lax, M.: Phys. Rev.157, 231 (1967)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Dörfle
    • 1
  • A. Schenzle
    • 1
  1. 1.Fachbereich PhysikUniversität-Gesamthochschule EssenEssen 1Germany

Personalised recommendations