Zeitschrift für Physik B Condensed Matter

, Volume 76, Issue 4, pp 473–482 | Cite as

On the spectral function of a hole in a one-dimensional quantum antiferromagnet

  • W. Brenig
  • K. W. Becker


We discuss the spectral function of a single hole moving in a one-dimensional quantum antiferromagnet. The latter is described by an anisotropic version of thet-J model, wheret is the hopping matrix element. We introduce two independent coupling parametersJ andJ for the Ising and the transverse part of the Heisenberg exchange. Strong electronic correlations which are incorporated in the model prevent the use of usual diagrammatic techniques for dynamic Green functions based on Wick's theorem. For that reason a new projection technique for general correlation functions in terms of cumulants is used. We consider the case of max
. For the case of small transverse coupling relative to the Ising part, we give exact expressions for the one hole correlation function. In the limit of vanishing spin fluctuations our result reduces to earlier calculations of the motion of a hole in a one-dimensional Néel state. However, the inclusion of the spin fluctuations leads to drastic modifications of the spectral function.


Correlation Function Spectral Function General Correlation Spin Fluctuation Diagrammatic Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mott, N.F.: Proc. Phys. Soc. London A62, 416 (1949)Google Scholar
  2. 2.
    Mattheiss, L.F.: Phys. Rev. Lett.58, 1028 (1987). See also Yu, J., Freeman, A.J., Xu, J.-H.: Phys. Rev. Lett.58, 1035 (1987)Google Scholar
  3. 3.
    Hubbard, J.: Proc. R. Soc. London Ser.A276, 238 (1963)Google Scholar
  4. 4.
    Gutzwiller, M.C.: Phys. Rev. Lett.10, 159 (1963)Google Scholar
  5. 5.
    Gross, C., Joynt, B., Rice, T.M.: Phys. Rev.B36, 8190 (1987)Google Scholar
  6. 6.
    Chao, K.A., Spalek, J., Oleś, A.M.: J. Phys.C10, L271 (1977)Google Scholar
  7. 7.
    Becker, K.W., Fulde, P.: Z. Phys. B — Condensed Matter72, 423 (1988)Google Scholar
  8. 8.
    Forster, D.: Hydrodynamic fluctuations, broken symmetry, and correlation functions. Reading, Benjamin Publ. 1975Google Scholar
  9. 9.
    Fick, E., Sauermann, G.: Quantenstatistik dynamischer Prozesse. Frankfurt: H. Deutsch Verlag 1986Google Scholar
  10. 10.
    Becker, K.W., Brenig, W.: (to be published)Google Scholar
  11. 11.
    Kubo, R., J. Phys. Soc. Jpn.17, 1100 (1962)Google Scholar
  12. 12.
    Becker, K.W., Fulde, P.: to appeare in: J. Phys. Chem. (1989)Google Scholar
  13. 13.
    Meeron, E.: J. Chem. Phys.27, 67 (1957)Google Scholar
  14. 14.
    Kane, C.L., Lee, P.A., Read, N.: Phys. Rev.B39, 6880 (1989)Google Scholar
  15. 15.
    Eder, R.: Private communicationGoogle Scholar
  16. 16.
    Mohan, M.: PreprintGoogle Scholar
  17. 17.
    Mori, H.: Prog. Theor. Phys.34, 423 (1965)Google Scholar
  18. 18.
    Zwanzig, R.: In: Lectures in theoretical physics. Vol. 3. New York: Interscience 1961Google Scholar
  19. 19.
    Brinkman, W.F., Rice, T.M.: Phys. Rev.B2, 1324 (1970)Google Scholar
  20. 20.
    Bethe, H.: Z. Phys.71, 205 (1931)Google Scholar
  21. 21.
    Hulthén, L.: Ark. Met. Astron. Fysik26A, Na. 11 (1938)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • W. Brenig
    • 1
  • K. W. Becker
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany

Personalised recommendations