Zeitschrift für Physik B Condensed Matter

, Volume 85, Issue 3, pp 327–332 | Cite as

Direct observation of macroscopic charge quantization

  • P. Lafarge
  • H. Pothier
  • E. R. Williams
  • D. Esteve
  • C. Urbina
  • M. H. Devoret
Article

Abstract

The circuit formed by a nanoscale tunnel junction in series with a capacitance and a voltage source is the building block of most multi-junction circuits of single electronics. The state of this “single electron box” is entirely determined by the numbern of extra electrons on the intermediate “island” electrode between the junction and the capacitance. We have fabricated such a system and measured the charge on the junction capacitance, which is directly related to the average value ofn, as a function of the bias voltage using a Fulton-Dolan electrometer. At low temperature, the junction charge followed thee-periodic sawtooth function expected from the theory of macroscopic charge quantization. Strikingly,e-periodic variations were also observed when the box was superconducting. The thermal rounding of the sawtooth function is well explained by a simple model, except at the lowest temperatures.

Keywords

Spectroscopy Neural Network State Physics Complex System Simple Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Averin, D.V., Likharev, K.K.: J. Low Temp. Phys.62, 345 (1986)Google Scholar
  2. 2.
    Devoret, M.H., Esteve, D., Grabert, H., Ingold, G.-L., Pothier, H., Urbina, C.: Phys. Rev. Lett.64, 1824 (1990)Google Scholar
  3. 3.
    Cleland, A.N., Schmidt, J.M., Clarke, J.: Phys. Rev. Lett.64, 1565 (1990)Google Scholar
  4. 4.
    Fulton, T.A., Dolan, G.J.: Phys. Rev. Lett.59, 109 (1987)Google Scholar
  5. 5.
    Ingold, G.-L., Wyrowski, P., Grabert, H.: Z. Phys. B — Condensed Matter 85, 443 (1991)Google Scholar
  6. 6.
    Kuzmin, L.S., Delsing, P., Claeson, T., Likharev, K.K.: Phys. Rev. Lett.62, 2539 (1989); Delsing, P., Likharev, K.K., Kuzmin, L.S., Claeson, T.: Phys. Rev. Lett.63, 1180 (1989); Geerligs, L.J., Anderegg, V.F., van der Jeugd, C.A., Romijn, J., Mooij, J.E.: Europhys. Lett.10, 79 (1989)Google Scholar
  7. 7.
    Delsing, P., Likharev, K.K., Kuzmin, L.S., Claeson, T.: Phys. Rev. Lett.63, 1861 (1989)Google Scholar
  8. 8.
    Geerligs, L.J., Anderegg, V.F., Holweg, P., Mooij, J.E., Pothier, H., Esteve, D., Urbina, C., Devoret, M.H.: Phys. Rev. Lett.64, 2691 (1990)Google Scholar
  9. 9a.
    Pothier, H., Lafarge, P., Orfila, P.F., Urbina, C., Esteve, D., Devoret, M.H.: Physica B169, 573 (1991);Google Scholar
  10. 9b.
    Pothier, H., Lafarge, P., Urbina, C., Esteve, D., Devoret, M.H.: Europhys. Lett. (to be published)Google Scholar
  11. 10.
    Zwerger, W., Scharpf, M.: Z. Phys. B — Condensed Matter85, 421 (1991)Google Scholar
  12. 11.
    Glazman, L.I., Shekhter, R.I.: J. Phys. Condensed Matter1, 989, 5811 (1989)Google Scholar
  13. 12.
    Büttiker, M.: Phys. Rev. B36, 3548 (1987)Google Scholar
  14. 13.
    Fulton, T.A., Gammel, P.L., Bishop, D.J., Dunkelberger, L.N., Dolan, G.J.: Phys. Rev. Lett.63, 1307 (1989)Google Scholar
  15. 14.
    Geerligs, L.J.: PhD thesis T.U. Delft (1990)Google Scholar
  16. 15.
    Roukes, M.L., Freeman, M.R., Germain, R.S., Richardson, R.C., Ketchen, M.B.: Phys. Rev. Lett.55, 422 (1985); Wellstood, F.C.: PhD Thesis, Berkeley (1988)Google Scholar
  17. 16.
    Schwartz, D.B., Sen, B., Archie, C.N., Lukens, J.E.: Phys. Rev. Lett.55, 1547 (1985)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Lafarge
    • 1
  • H. Pothier
    • 1
  • E. R. Williams
    • 1
  • D. Esteve
    • 1
  • C. Urbina
    • 1
  • M. H. Devoret
    • 1
  1. 1.Service de Physique de l'Etat CondenséCentre d'Etudes de SaclayGif-sur-Yvette CedexFrance

Personalised recommendations