Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 52, Issue 4, pp 321–334 | Cite as

Stability of generation-recombination induced dissipative structures in semiconductors

  • Eckehard Schöll
Article

Abstract

A class of generation-recombination models involving one type of carriers and several impurity levels is studied. Far from equilibrium, impact ionization can lead to bistability of the homogeneous steady state resulting inS-shaped current-voltage characteristics, and to stationary spatial structures. It is shown for large samples that kink-shaped coexistence profiles are stable, while plane depletion or accumulation layers and cylindrical current filaments are unstable under constant voltage conditions, but can be stabilized by a constant current. The unstable mode is calculated analytically for wide and for narrow depletion layers. The critical slowing-down of this mode is established explicity as a function of the external electric field; it occurs when the threshold or holding field of the switching transitions, or the coexistence field of homogeneous phases is approached. It is shown that the hysteresis cycle of the switching transitions can be shortened by sufficiently large localized fluctuations inducing the nucleation of current layers or filaments.

Keywords

External Electric Field Impact Ionization Unstable Mode Depletion Layer Dissipative Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schöll, E.: Z. Phys. B — Condensed Matter48, 153 (1982)Google Scholar
  2. 2.
    Schöll, E.: Z. Phys. B — Condensed Matter46, 23 (1982)Google Scholar
  3. 3.
    Robbins, D.J., Landsberg, P.T., Schöll, E.: Phys. Status Solidi (a)65, 353 (1981)Google Scholar
  4. 4.
    Haken, H.: Synergetics. 2nd Edn. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  5. 5.
    Schlögl, F.: Z. Phys.253, 147 (1972)Google Scholar
  6. 6.
    Nicolis, G., Prigogine, I.: Self-Organization in non-equilibrium systems. New York: Wiley 1977Google Scholar
  7. 7.
    Magyari, E.: J. Phys. A15, L139 (1982)Google Scholar
  8. 7a.
    Schlögl, F., Escher, C., Berry, R.S.: Phys. Rev. A27, 2689 (1983)Google Scholar
  9. 8.
    Bedeaux, D., Mazur, P.: Physica105 A, 1 (1981)Google Scholar
  10. 9.
    Volkov, A.F., Kogan, Sh.M.: Sov. Phys. Usp.11, 881 (1969)Google Scholar
  11. 10.
    Bonch-Bruevich, V.L., Zvyagin, I.P., Mironov, A.G.: Domain electrical instabilities in semiconductors. New York: Consultant Bureau 1975Google Scholar
  12. 11.
    Shaw, M.P., Grubin, H.L., Solomon, P.: The Gunn-Hilsum effect. New York: Academic Press 1979Google Scholar
  13. 12.
    Pozhela, J.: Plasma and Current Instabilities in Semiconductors. Oxford: Pergamon Press 1981Google Scholar
  14. 13.
    Shaw, M.P., Yildirim, N.: Thermal and Electrothermal Instabilities in Semiconductors. Adv. Electr. Electron Phys. (to be published)Google Scholar
  15. 14.
    Büttiker, M., Thomas, H.: Phys. Rev. A24, 2635 (1981)Google Scholar
  16. 15.
    Barenblatt, G.I., Zel'dovich, Ya.B.: Prikl. Mat. Mekh.21, 856 (1957)Google Scholar
  17. 16.
    Volkov, A.F., Kogan, Sh.M.: Sov. Phys. JETP25, 1095 (1967)Google Scholar
  18. 17.
    Knight, B.W., Peterson, G.A.: Phys. Rev.155, 393 (1967)Google Scholar
  19. 18.
    Büttiker, M., Thomas, H.: Z. Phys. B — Condensed Matter34, 301 (1979)Google Scholar
  20. 19.
    Bass, F.G., Bochkov, V.S., Gurevich, Yu.G.: Sov. Phys. JETP,31, 972 (1970)Google Scholar
  21. 20.
    Grubin, H.L., Shaw, M.P., Solomon, P.R.: IEEE Trans. Electron Devices20, 63 (1973)Google Scholar
  22. 21.
    Jackson, J.L., Shaw, M.P.: Appl. Phys. Lett.25, 666 (1974)Google Scholar
  23. 22.
    Landsberg, P.T.: Semiconductor Statistics. In: Handbook of Semiconductors. Moss, T.S. (ed.), Vol. I, Chapt. 8, Amsterdam: North-Holland 1982Google Scholar
  24. 23.
    Schöll, E., Heisel, W., Prettl, W.: Z. Phys. B — Condensed Matter47, 285 (1982)Google Scholar
  25. 24.
    Pickin, W.: Solid State Electron.21, 309 (1978)Google Scholar
  26. 25.
    Proctor, W.G., Lawaetz, P., Marfaing, Y., Triboulet, R.: Phys. Status Solidi (b)110, 637 (1982)Google Scholar
  27. 26.
    Messiah, A.: Quantum Mechanics Vol. 1, Ch. III §12. Amsterdam: North Holland 1972Google Scholar
  28. 27.
    Kamke, E.: Differentialgleichungen, Lösungsmethoden und Lösungen Vol. I. Leipzig: Akadem. Verlagsgesellschaft 1967Google Scholar
  29. 28.
    Flügge, S.: Practical quantum mechanics. Vol. I. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  30. 29.
    see Ref.26Google Scholar
  31. 30.
    Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. Ch. 8§1. New York, Toronto, London: McGraw-Hill 1955Google Scholar
  32. 31.
    Kramer, L.: Z. Phys. B-Condensed Matter41, 357 (1981)Google Scholar
  33. 32.
    Schöll, E.: (to be publiched)Google Scholar
  34. 33.
    Jetschke, G.: Phys. Lett.72A, 265 (1979)Google Scholar
  35. 34.
    see Ref.26Google Scholar
  36. 35.
    Ince, E.L.: Ordinary differential equations. New York: Dover 1956Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Eckehard Schöll
    • 1
  1. 1.Institut für Theoretische Physik BRheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations