Monatshefte für Mathematik

, Volume 118, Issue 1–2, pp 33–40 | Cite as

Some Erdös-Szekeres type results about points in space

  • T. Bisztriczky
  • V. Soltan


The Erdös-Szekeres convexn-gon theorem states that for anyn≥3, there is a smallest integerf(n) such that any set of at leastf(n) points in the planeE2, no three collinear, contains the vertices of a convexn-gon. We consider three versions of this result as applied to convexly independent points and convex polytopes inE d >,d≥2.

1991 Mathematics Subject Classification

52B11 52C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Comp. Math.2, 463–470 (1935).Google Scholar
  2. [2]
    Erdös, P., Szekers, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest3, 53–62 (1960).Google Scholar
  3. [3]
    Gale, D.: Neighbourly and cyclic polytopes. Proc. Symp. Pure Math. (Convexity)7, 225–232 (1963).Google Scholar
  4. [4]
    Grünbaum, B.: Convex Polytopes. London-New York-Sydney: Wiley. 1967.Google Scholar
  5. [5]
    Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math.33, 116–118 (1978).Google Scholar
  6. [6]
    Horton, J. D.: Sets with no empty convex 7-gons. Canad. Math. Bull.26, 482–484 (1983).Google Scholar
  7. [7]
    Kalbfleisch, J. D., Kalbfleisch, J. G., Stanton, R. G.: A combinatorial problem on convexn-gons. In: Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing. pp. 180–188. Baton Rouge: Louisiana State Univ. 1970.Google Scholar
  8. [8]
    Valtr, P.: Sets inR d with no large empty convex subsets. Discrete Math.108, 115–124 (1992).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • T. Bisztriczky
    • 1
  • V. Soltan
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.Math. InstituteAcad. Sci. MoldaviaKishinevMoldava

Personalised recommendations