Protoplasma

, Volume 211, Issue 3–4, pp 140–150

Novel insights into intermediate-filament function from studies of transgenic and knockout mice

Focus on Cellular Biochemistry

Summary

The function of intermediate-filament (IF) proteins has been a matter of speculation for a long time. Now, the analysis of genetically altered mice is contributing to the understanding of their function. While the initial analysis of knockout mice supports the global view that keratins in epidermis and desmin in muscle serve an important structural function by protecting these tissues against mechanical stress, the detailed examination of these and other mice suggests that IF are more than passive cytoskeletal proteins. This is highlighted by mice with deficiencies for keratins in internal epithelia, vimentin, GFAP, or neurofilament proteins. These lack overt phenotypes expected as a result of cytoskeletal deficiency but show defects compatible with a role of IF in protecting tissues against toxic and other forms of stress. Moreover, the first round of gene replacement experiments suggests that keratins from internal epithelia are unable to take the place of their epidermal counterparts. The development of mice with point mutations, paralleled by the mutation analysis of human diseases and the characterization of IF-associated proteins will be instrumental to understand why evolution has produced such a diverse gene family to encode simple 10 nm diameter filaments.

Keywords

Intermediate filaments Keratins Cytoskeleton Transgenic mice Animal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers KM, Davis FE, Perrone TN, Lee EY, Liu Y, Vore M (1995) Expression of an epidermal keratin protein in liver of transgenic mice causes structural and functional abnormalities. J Cell Biol 128: 157–169Google Scholar
  2. Andrä K, Lassmann H, Bittner R, Shorny S, Fassler R, Propst F, Wiche G (1997) Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev 11: 3143–3156Google Scholar
  3. Baribault H, Price J, Miyai K, Oshima RG (1993) Mid-gestational lethality in mice lacking keratin 8. Genes Dev 7: 1191–1202Google Scholar
  4. —, Penner J, Lozzo RV, Wilson HM (1994) Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev 8: 2964–2973Google Scholar
  5. Bickenbach JR, Longley MA, Bundman DS, Dominey AM, Bowden PE, Rothnagel JA, Roop DR (1996) A transgenic mouse model that recapitulates the clinical features of both neonatal and adult forms of the skin disease epiderrnolytic hyperkeratosis. Differentiation 61: 129–139Google Scholar
  6. Brock J, McCluskey J, Baribault H, Martin P (1996) Perfect wound healing in the keratin 8 deficient mouse embryo. Cell Motil Cytoskeleton 35: 358–366Google Scholar
  7. Candi E, Tarcsa E, Digiovanna JJ, Compton JG, Elias PM, Marekov LN, Steinert PM (1998) A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc Natl Acad Sci USA 95: 2067–2072Google Scholar
  8. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79: 679–694Google Scholar
  9. —, Gimenez YR, Maurice T, Babinet C, Privat A (1998) Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 25: 33–43Google Scholar
  10. Corden LD, McLean WH (1996) Human keratin diseases: hereditary fragility of specific epithelial tissues. Exp Dermatol 5: 297–307Google Scholar
  11. Coté F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73: 35–46Google Scholar
  12. Denk H, Lackinger E (1986) Cytoskeleton in liver diseases. Semin Liver Dis 6: 199–211Google Scholar
  13. Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvee A, Koteliansky V, Babinet C, Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deflcient flbroblasts. J Cell Sci 111: 1897–1907Google Scholar
  14. Elder GA, Friedrich VL Jr, Bosco P, Kang C, Gourov A, Tu PH, Lee VM, Lazzarini RA (1998a) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol 141: 727–739Google Scholar
  15. — —, Kang C, Bosco P, Gourov A, Tu PH, Zhang B, Lee VM, Lazzarini RA (1998b) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143: 195–205Google Scholar
  16. Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12: 389–405Google Scholar
  17. Fuchs E, Weber K (1994) Intermediate filaments and disease: mutations that cripple cell strength. J Cell Biol 125: 511–516Google Scholar
  18. —, Esteves RA, Coulombe PA (1992) Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. Proc Natl Acad Sci USA 89: 6906–6910Google Scholar
  19. Galou M, Colucci GE, Ensergueix D, Ridet JL, Gimenez Y, Ribotta M, Privat A, Babinet C, Dupouey P (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J Cell Biol 133: 853–863Google Scholar
  20. Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19: 177–181 (Erratum, 19: 271)Google Scholar
  21. —, Williams SP, Cairns B, Van Bruggen N, Moran P, Shih A, Caras I, Sauer H, Phillips HS, Winslow JW (1998) Protein targeting in the analysis of learning and memory: a potential alternative to gene targeting. Exp Brain Res 123: 24–35Google Scholar
  22. Goebel HH, Bornemann A (1993) Desmin pathology in neuromuscular diseases. Virchows Arch B Cell Pathol Incl Mol Pathol 64: 127–135Google Scholar
  23. Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O, Nagle JW, Semino MC, Sivakumar K, Dalakas MC (1998) Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 19: 402–403Google Scholar
  24. Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14: 29–41Google Scholar
  25. Guo L, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B, Fuchs E (1995) Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81: 233–243Google Scholar
  26. Hatzfeld M, Franke WW (1985) Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol 101: 1826–1841Google Scholar
  27. Henrion D, Terzi F, Matrougui K, Duriez M, Boulanger CM, Colucci GE, Babinet C, Briand P, Friedlander G, Poitevin P, Levy BI (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100: 2909–2914Google Scholar
  28. Herrmann H, Aebi U (1998) Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Curr Opin Struct Biol 8: 177–185Google Scholar
  29. —, Harris JR (eds) (1998) Intermediate filaments. Plenum, New YorkGoogle Scholar
  30. Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43: 461–470Google Scholar
  31. Hirokawa N, Takeda S (1998) Gene targeting studies begin to reveal the function of neurofilament proteins. J Cell Biol 143: 1–4 (Erratum, 143: 1142)Google Scholar
  32. Hutton E, Paladini RD, Yu QC, Yen M, Coulombe PA, Fuchs E (1998) Functional differences between keratins of stratified and simple epithelia. J Cell Biol 143: 487–499Google Scholar
  33. Irvine AD, Corden LD, Swensson Q, Swensson B, Moore JE, Frazer DG, Smith FJ, Knowlton RG, Christophers E, Rochels R, Uitto J, McLean WH (1997) Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy. Nat Genet 16: 184–187Google Scholar
  34. Kao WW, Liu CY, Converse RL, Shiraishi A, Kao CW, Ishizaki M, Doetschman T, Duffy J (1996) Keratin 12-deficient mice have fragile corneal epithelia. Invest Ophthalmol Vis Sci 37: 2572–2584Google Scholar
  35. Ku NO, Michie S, Oshima RG, Omary MB (1995) Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J Cell Biol 131: 1303–1314Google Scholar
  36. — —, Soetikno RM, Resurreccion EZ, Broome RL, Oshima RG, Omary MB (1996) Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. J Clin Invest 98: 1034–1046Google Scholar
  37. — — —, Resurreccion EZ, Broome RL, Omary MB (1998) Mutation of a major keratin phosphorylation site predisposes to hepatotoxic injury in transgenic mice. J Cell Biol 143: 2023–2032Google Scholar
  38. Leube RE, Bader BL, Bosch FX, Zimbelmann R, Achtstaetter T, Franke WW (1988) Molecular characterization and expression of the stratification-related cytokeratins 4 and 15. J Cell Biol 106: 1249–1261Google Scholar
  39. Li Z, Colucci GE, Pincon RM, Mericskay M, Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175: 362–366Google Scholar
  40. —, Mericskay M, Agbulut O, Butler BG, Carlsson L, Thornell LE, Babinet C, Paulin D (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139: 129–144Google Scholar
  41. Liedtke W, Edelmann W, Chiu FC, Kucherlapati R, Raine CS (1998) Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol 152: 251–259Google Scholar
  42. Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, Fuchs E (1995) The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol 129: 1329–1344Google Scholar
  43. Loranger A, Duclos S, Grenier A, Price J, Wilson HM, Baribault H, Marceau N (1997) Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am J Pathol 151: 1673–1683Google Scholar
  44. Magin TM (1998) Lessons from keratin transgenic and knockout mice. In: Hermann H, Harris JR (eds) Intermediate filaments. Plenum, New York, pp 141–172Google Scholar
  45. —, Schröder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW (1998) Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 140: 1441–1451Google Scholar
  46. Mansbridge JN, Knapp AM (1987) Changes in keratinocyte maturation during wound healing. J Invest Dermatol 89: 253–263Google Scholar
  47. Marszalek JR, Williamson TL, Lee MK, Xu Z, Hoffman PN, Becher MW, Crawford TO, Cleveland DW (1996) Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 135: 711–724Google Scholar
  48. McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sic USA 93: 6361–6366Google Scholar
  49. Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134: 1255–1270Google Scholar
  50. Moll R, Franke WW, Schiller DL, Geiger B, Krepier R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24Google Scholar
  51. Munoz-Marmol A, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela E, Mate JL, Coll J, Fernandez FM, Navas PJ, Ariza A, Fuchs E (1998) A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci USA 95: 11312–11317Google Scholar
  52. Myers MW, Lazzarini RA, Lee VM, Schlaepfer WW, Nelson DL (1987) The human mid-size neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J 6: 1617–1626Google Scholar
  53. Nakano S, Engel AG, Waclawik AJ, Emslie SA, Busis NA (1996) Myofibrillar myopathy with abnormal foci of desmin positivity I: light and electron microscopy analysis of 10 cases. J Neuropathol Exp Neurol 55: 549–562Google Scholar
  54. Ness SL, Edelmann W, Jenkins TD, Liedtke W, Rustgi AK, Kucherlapati R (1988) Mouse keratin 4 is necessary for internal epithelial integrity. J Biol Chem 273: 23904–23911Google Scholar
  55. Ohara O, Gahara Y, Miyke T, Teraoka H, Kitamura T (1993) Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J Cell Biol 121: 387–395Google Scholar
  56. Omary MB, Ku NO (1997) Intermediate filament proteins of the liver: emerging disease association and functions. Hepatology 25: 1043–1048Google Scholar
  57. Paladini RD, Coulombe PA (1998) Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J Cell Biol 142: 1035–1051Google Scholar
  58. — —, (1999) The functional diversity of epidermal keratins revealed by the partial rescue of the keratin 14 null phenotype by keratin 16. J Cell Biol 146: 1185–1201Google Scholar
  59. Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14: 1590–1598Google Scholar
  60. Porter RM, Leitgeb S, Melton DW, Swensson O, Eady RA, Magin TM (1996) Gene targeting at the mouse cytokeratin 10 locus: severe skin fragility and changes of cytokeratin expression in the epidermis. J Cell Biol 132: 925–936Google Scholar
  61. —, Reichelt J, Lunny DP, Magin TM, Lane EB (1998a) The relationship between hyperproliferation and epidermal thickening in a mouse model for BCIE. J Invest Dermatol 110: 951–957Google Scholar
  62. —, Hutcheson AM, Rugg EL, Quinlan RA, Lane EB (1998b) cDNA cloning, expression and assembly characteristics of mouse keratin 16. J Biol Chem 273: 32265–32272Google Scholar
  63. Rao MV, Houseweart MK, Williamson TL, Crawford TO, Folmer J, Cleveland DW (1998) Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol 143: 171–181Google Scholar
  64. Reichelt J, Bauer C, Porter R, Lane E, Magin V (1997) Out of balance: consequences of a partial keratin 10 knockout. J Cell Sci 110: 2175–2186Google Scholar
  65. —, Doering T, Schnetz E, Fartasch M, Sandhoff K, Magin TM (1999) Normal ultrastructure, but altered stratum corneum lipid and protein composition in a mouse model for epidermolytic hyperkeratosis. J Invest Dermatol 113: 329–333Google Scholar
  66. Ruhrberg C, Watt FM (1997) The plakin family: versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 7: 392–397Google Scholar
  67. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 1848: 81–100Google Scholar
  68. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16: 587–599Google Scholar
  69. Sjuve R, Arner A, Li Z, Mies B, Paulin D, Schmittner M, Small JV (1998) Mechanical alterations in smooth muscle from mice lacking desmin. J Muscle Res Cell Motil 19: 415–429Google Scholar
  70. Stromer MH (1988) The cytoskeleton in skeletal, cardiac and smooth muscle cells. Histol Histopathol 13: 283–291Google Scholar
  71. Takahashi K, Coulombe PA (1996) A transgenic mouse model with an inducible skin blistering disease phenotype. Proc Natl Acad Sci USA 93: 14776–14781Google Scholar
  72. —, Folmer J, Coulombe PA (1994) Increased expression of keratin 16 causes anomalies in cytoarchitecture and keratinization in transgenic mouse skin. J Cell Biol 127: 505–520Google Scholar
  73. Terzi F, Maunoury R, Colucci GE, Babinet C, Federici P, Briand P, Friedlander G (1997a) Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin. Am J Pathol 150: 1361–1371Google Scholar
  74. —, Henrion D, Colucci GE, Federici P, Babinet C, Levy BI, Briand P, Friedlander G (1997b) Reduction of renal mass is lethal in mice lacking vimentin: role of endothelin-nitric oxide imbalance. J Clin Invest 100: 1520–1528Google Scholar
  75. Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29: 2107–2124Google Scholar
  76. Toivola DM, Omary MB, Ku NO, Peltola O, Baribault H, Eriksson JE (1998) Protein phosphatase inhibition in normal and keratin 8/18 assembly-incompetent mouse strains supports a functional role of keratin intermediate filaments in preserving hepatocyte integrity. Hepatology 28: 116–128Google Scholar
  77. Venetianer A, Schiller DL, Magin T, Franke WW (1983) Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions. Nature 305: 730–733Google Scholar
  78. Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20: 92–95Google Scholar
  79. Wang X, Messing A, David S (1997) Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol 148: 568–576Google Scholar
  80. Wawersik M, Paladini RD, Noensie E, Coulombe PA (1997) A proline residue in the alpha-helical rod domain of type I keratin 16 destabilizes keratin heterotetramers. J Biol Chem 272: 32557–32565Google Scholar
  81. Weitzer G, Milner DJ, Kim JU, Bradley A, Capetanaki Y (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev Biol 172: 422–439Google Scholar
  82. Wong PC, Marszalek J, Crawford TO, Xu Z, Hsieh ST, Griffin JW, Cleveland DW (1995) Increasing neurofilament subunit NF-M expression reduces axonal, NF-H inhibits radial growth, and results in neurofilamentous accumulation in motor neurons. J Cell Biol 130: 1413–1422Google Scholar
  83. Xu Z, Marszalek JR, Lee MK, Wong PC, Folmer J, Crawford TO, Hsieh ST, Griffin JW, Cleveland DW (1996) Subunit composition of neurofilaments specifies axonal diameter. J Cell Biol 133: 1061–1069Google Scholar
  84. Yamasaki H, Itakura C, Mizutani M (1991) Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol 82: 427–434Google Scholar
  85. Zhu Q, Couillard DS, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148: 299–316Google Scholar
  86. —, Lindenbaum M, Levavasseur F, Jacomy H, Julien JP (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta, beta'-iminodipropionitrile. J Cell Biol 143: 183–193Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Thomas M. Magin
    • 1
  • Michael Hesse
    • 1
  • Rolf Schröder
    • 1
  1. 1.Abteilung Molekulargenetik, Institut für GenetikUniversität BonnBonnFederal Republic of Germany
  2. 2.Department of NeurologyUniversity Hospital BonnBonnFederal Republic of Germany

Personalised recommendations