Mathematische Zeitschrift

, Volume 188, Issue 2, pp 253–269 | Cite as

On the cuspidal cohomology of the Bianchi modular groups

  • J. Rohlfs


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, M.: Ramified primes and the homology of the Bianchi groups. IHES preprint (1982)Google Scholar
  2. 2.
    Borel, A., Serre, J.-P.: Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv.39, 111–164 (1964)Google Scholar
  3. 3.
    Grunewald, F., Schwermer, J.: Arithmetic quotients of hyperbolic 3-space, cusp forms and link complements. Duke Math. J.48, 351–358 (1981)Google Scholar
  4. 4.
    Grunewald, F., Schwermer, J.: A nonvanishing theorem for the cuspidal cohomology ofSL 2over imaginary quadratic integers. Math. Ann.258, 183–200 (1981)Google Scholar
  5. 5.
    Harder, G.: On the cohomology ofSL 2(\(\mathcal{O}\)). Lie groups and their representations. Proc. of the summer school on group repres. pp. 139–150. London: Hilger 1975Google Scholar
  6. 6.
    Hecke, E.: Vorlesungen über die Theorie der algebraischen Zahlen. New York: Chelsea 1970Google Scholar
  7. 7.
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. New York San Francisco London: Academic Press 1978Google Scholar
  8. 8.
    Mennicke, J.L., Grunewald, F.J.: Some 3-manifolds arising fromPSL 2(ℤ[i]). Arch. Math.35, 275–291 (1980)Google Scholar
  9. 9.
    Narkiewicz, W.: Elementary and analytic theory of algebraic numbers. Warszawa: Polish Scientific Publishers 1974Google Scholar
  10. 10.
    Prachar, K.: Primzahlverteilung. Berlin Heidelberg New York: Springer 1978Google Scholar
  11. 11.
    Rohlfs, J.: Arithmetisch definierte Gruppen mit Galoisoperation. Inventiones math.48, 185–205 (1978)Google Scholar
  12. 12.
    Rosser, B.: Then-th prime is greater thann·logn. Proc. London Math. Soc. (2)45, 21–44 (1938)Google Scholar
  13. 13.
    Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Math.5. Berlin New York Heidelberg: Springer 1965Google Scholar
  14. 14.
    Serre, J.-P.: Le problème des groupes de congruence pourSL 2 Ann. Math.92 489–527 (1972)Google Scholar
  15. 15.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten Publishers and Princeton: University Press 1971Google Scholar
  16. 16.
    Swan, R.G.: Generators and relations for certain special linear groups. Adv. Math.6, 1–77 (1971)Google Scholar
  17. 17.
    Tamagawa, T.: Adèles. Proc. Symp. Pure Math. IX, Amer. Math. Soc. 113–121 (1966)Google Scholar
  18. 18.
    Verdier, J.L.: Caracteristique d'Euler-Poincaré. Bull. Soc. Math. France101, 441–445 (1973)Google Scholar
  19. 19.
    Vignéras, M.-F.: Arithmétique des Algèbres de Quaternions. Lecture Notes in Math.800. Berlin Heidelberg New York: Springer 1980Google Scholar
  20. 20.
    Zimmert, R.: ZurSL 2 der ganzen Zahlen eines imaginär quadratischen Zahlkörpers. Inventiones math.19, 73–82 (1973)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Rohlfs
    • 1
  1. 1.Mathematisch-Geographische FakultätKatholische Universität EichstättEichstättFederal Republic of Germany

Personalised recommendations