Zeitschrift für Physik B Condensed Matter

, Volume 50, Issue 2, pp 97–105 | Cite as

On the dynamic mean field theory of spin glasses

  • H. -J. Sommers


We derive in detail Sompolinsky's mean field theory of spin glasses using a diagram expansion of the effective local Langevin equation of Sompolinsky and Zippelius. We use a simpler generating functional than in the literature, on which the quenched average is very easily done. We pay special attention to the existence of an external field. We show that there are two different types of singularities for ω=0 in the equations. The first type, which leads to Parisi'sq(0), is connected with the local magnetisation. The second type, which leads toq′(x), is connected with the nonergodic behaviour. We show that the continuous limit of discrete Sompolinsky solutions has to be taken in order to be in accordance with the fluctuation dissipation theorem on infinite time scales. We discuss carefully the question of dynamical stability. We show that Sommers' solution is unstable only on an infinite time scale and thus remains an acceptable equilibrium theory with a broken symmetry. We argue that for ω=0 a formal violation of the fluctuation dissipation theorem is physically expected if the relaxation times are of the order of the switching time of the external field. From this point of view the spin-glass state is a steady state but not a real equilibrium state.


Neural Network Relaxation Time Field Theory External Field Dynamical Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mackenzie, N.D., Young, A.P.: Phyw. Rev. Lett.49, 301 (1982)Google Scholar
  2. 2.
    Sherrington, D., Kirkpatrick, S.: Phys. Rev. Lett.35, 1792 (1975)Google Scholar
  3. 3.
    Sompolinsky, H.: Phys. Rev. Lett.47, 935 (1981)Google Scholar
  4. 4.
    Parisi, G.: Phys. Rev. Lett.43, 1754 (1979)Google Scholar
  5. 5.
    De Dominicis, C., Gabay, M., Duplantier, B.: J. Phys. A15, L47 (1982)Google Scholar
  6. 6.
    Sommers, H.-J.: J. Phys. A16, 447 (1983)Google Scholar
  7. 7.
    Sompolinsky, H., Zippelius, A.: Phys. Rev. Lett.47, 359 (1981); Phys. Rev. B25, 6860 (1982)Google Scholar
  8. 8.
    Hertz, J.A.: Preprints 1982Google Scholar
  9. 9.
    Ma S.-K., Rudnick, J.: Phys. Rev. Lett.40, 589 (1978)Google Scholar
  10. 10.
    Hertz, J.A., Klemm, R.A.: Phys Rev. Lett.21, 1397 (1978); Phys. Rev. B20, 316 (1979)Google Scholar
  11. 11.
    De Dominicis, C.: Phys. Rev. B18, 4913 (1978)Google Scholar
  12. 12.
    Schuster, H.G.: Z. Phys. B-Condensed Matter45, 99 (1981)Google Scholar
  13. 13.
    Martin, P.C., Siggia, E., Rose, H.: Phys. Rev. A8, 423 (1973)Google Scholar
  14. 14.
    Janssen, H.K.: Z. Phys. B-Condensed Matter23, 377 (1976)Google Scholar
  15. 15.
    Deker, U., Haake, F.: Phys. Rev. A11, 2043 (1975)Google Scholar
  16. 16.
    Graham, R.: Springer Tracts in Modern Physics. Vol. 66. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  17. 17.
    De Dominicis, C., Peliti, L.: Phys. Rev. B18, 353 (1978)Google Scholar
  18. 18.
    Parisi, G.: J. Phys. A13, L115 (1980)Google Scholar
  19. 19.
    Edwards, S.F., Anderson, P.W., J. Phys. F.5, 965 (1975)Google Scholar
  20. 20.
    Sommers, H.-J.: J. Phys. (Paris) Lett.43, L719 (1982)Google Scholar
  21. 21.
    Young, A.P., Kirkpatrick, S.: Phys. Rev. B.25, 440 (1982)Google Scholar
  22. 22.
    Fischer, K.H.: Phys. Rev. Lett.34, 1438 (1975)Google Scholar
  23. 23.
    Murani, A.P., Heidemann, A.: Phys. Rev. Lett.41, 1402 (1978)Google Scholar
  24. 24.
    Murani, A.P.: J. Magn. Magn. Mater.22 271 (1981)Google Scholar
  25. 25.
    Tholence, J.L., Tournier, R.: J. Phys. (Paris)35, C4–229 (1974)Google Scholar
  26. 26.
    Guy, C.N.: J. Phys. F7, 1505 (1977)Google Scholar
  27. 27.
    De Almeida, J.R.L., Thouless, D.J.: J. Phys. A11, 983 (1978)Google Scholar
  28. 28.
    Sommers, H.-J.: Z. Phys. B-Condensed Matter31, 301 (1978)Google Scholar
  29. 29.
    De Dominicis, C., Garel, T.: J. Phys. (Paris) L22, 576 (1979)Google Scholar
  30. 30.
    Sommers, H.-J.: Solid State Commun.40, 45 (1981)Google Scholar
  31. 31.
    De Dominicis, C., Kondor, I.: Preprint 1982Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. -J. Sommers
    • 1
  1. 1.Institut Max von Laue-Paul LangevinGrenoble CedexFrance

Personalised recommendations