Zeitschrift für Physik B Condensed Matter

, Volume 55, Issue 4, pp 325–333 | Cite as

Monte Carlo evidence of non-equilibrium effects for ising model in a random field

  • D. Stauffer
  • C. Hartzstein
  • K. Binder
  • A. Aharony


Simulating an Ising model, up to sizes 150×150×150 in three and 225×225 in two dimensions, in a random field of strength ±H, we find a magnetization slowly decreasing with time if initially all spins are parallel. This decay is extremely slow for small random fields, so that a stable magnetization cannot be excluded. Below some “freezing” temperature, the system remains a single domain, with a finite magnetization in both two and three dimensions. If instead the system is cooled down in a constant random field, from temperatures above to temperatures below this freezing transition, then at the lower temperature the magnetization increases with time; this increase is very slow for large systems, with similar results in two and three dimensions.


Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Imry, Y.: Proceedings of STATPHYS 15. J. Stat. Phys.34, (1984); see also Binder, K., Stauffer, D.: In: Monte Carlo Methods in Statistical Physics II. Chap. 8. Berlin, Heidelberg, New York, Tokyo: Springer 1984Google Scholar
  2. 2.
    Birgeneau, R.J., Cowley, R.A., Shirane, G., Yoshisawa, Y.: Proceedings of STATPHYS 15. J. Stat. Phys.34, 817 (1984)Google Scholar
  3. 3.
    Fishman, S., Aharony, A.: J. Phys. C12, 1724 (1979)Google Scholar
  4. 4.
    Kalle, C.: Private communication, Sept. 1983, and Masters Thesis, Cologne University (in preparation)Google Scholar
  5. 5.
    Jacobs, L.A., Nauenberg, M.: Preprint; Andelman, D., Orland, H., Wijewardhana, L.C.W.: Phys. Rev. Lett.52, 145 (1984)Google Scholar
  6. 6a.
    Zorn, R., Herrmann, H.J., Rebbi, C.: Comp. Phys. Commun.23, 337 (1981)Google Scholar
  7. 6b.
    Kalle, C., Winkelmann, V.: J. Statist. Phys.28, 639 (1982)Google Scholar
  8. 7.
    Binder, K., Stauffer, D.: Chap. 1, in Ref. 1Google Scholar
  9. 8.
    Adler, J.: J. Phys. A16, 3585 (1983)Google Scholar
  10. 9.
    Wansleben, S., Zabolitzky, J.G., Kalle, C.: Preprint for J. Statist. Phys.Google Scholar
  11. 10.
    Stauffer, D., Coniglio, A., Heermann, D.W.: Phys. Rev. Lett.29, 1299 (1982)Google Scholar
  12. 11.
    Pearson, R.B., Richardson, J.L., Toussaint, D.: J. Comp. Phys.51, 243 (1983); Ogielsky, A.: CECAM meeting, Orsay, January 1984Google Scholar
  13. 12.
    Young, A.P.: Phys. Rev. Lett.50, 917 (1983)Google Scholar
  14. 13a.
    Landau, D.P., Lee, H.H., Kao, W.: J. Appl. Phys.49, 1356 (1978)Google Scholar
  15. 13b.
    for two dimensions see also Morgenstern, I., Binder, K., Hornreich, R.M.: Phys. Rev. B23, 287 (1981)Google Scholar
  16. 14.
    see e.g. Sadiq, A., Binder, K.: Phys. Rev. Lett.51, 674 (1983); Preprint for J. Statist. Phys.Google Scholar
  17. 15.
    Binder, K.: Z. Phys. B-Condensed Matter50, 343 (1983)Google Scholar
  18. 16.
    Villain, J.: PreprintGoogle Scholar
  19. 17.
    Krey, U.: Preprint and Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • D. Stauffer
    • 1
  • C. Hartzstein
    • 2
  • K. Binder
    • 3
  • A. Aharony
    • 4
  1. 1.Institut für Theoretische Physik der UniversitätKölnFederal Republic of Germany
  2. 2.Department of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  3. 3.Institut für FestkörperforschungKernforschungsanlage JülichJülich 1Federal Republic of Germany
  4. 4.Department of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations