Probability Theory and Related Fields

, Volume 104, Issue 1, pp 43–60 | Cite as

The law of the Euler scheme for stochastic differential equations

I. Convergence rate of the distribution function
  • V. Bally
  • D. Talay


We study the approximation problem ofEf(X T ) byEf(X T n ), where (X t ) is the solution of a stochastic differential equation, (X T n ) is defined by the Euler discretization scheme with stepT/n, andf is a given function. For smoothf's, Talay and Tubaro have shown that the errorEf(X T ) −f(X T n ) can be expanded in powers of 1/n, which permits to construct Romberg extrapolation precedures to accelerate the convergence rate. Here, we prove that the expansion exists also whenf is only supposed measurable and bounded, under an additional nondegeneracy condition of Hörmander type for the infinitesimal generator of (X t ): to obtain this result, we use the stochastic variations calculus. In the second part of this work, we will consider the density of the law ofX T n and compare it to the density of the law ofX T .

Mathematics Subject Classification

60H07 60H10 60J60 65C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bally, V.: On the connection between the Malliavin covariance matrix and Hörmander's condition. J. Funct. Anal.96, 219–255 (1991)Google Scholar
  2. 2.
    Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations (II): convergence rate of the density (submitted)Google Scholar
  3. 3.
    Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North-Holland 1981Google Scholar
  4. 4.
    Kloeden, P. E., Platen, E.: Numerical solution of stochastic differential equations. Berlin: Springer 1992Google Scholar
  5. 5.
    Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus, part II. J. Fac. Sci. Univ. Tokyo32, 1–76 (1985)Google Scholar
  6. 6.
    Milshtein, G. N.: A method of second-order accuracy integration of stochastic differential equations. Theory Probab. Appl.23, 396–401 (1976)Google Scholar
  7. 7.
    Milshtein, G. N.: Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl.30, 750–766 (1985)Google Scholar
  8. 8.
    Newton, N. J.: Variance reduction for simulated diffusions. SIAM J. appl. Math. (to appear)Google Scholar
  9. 9.
    Nualart, D.: Malliavin calculus and related topics, Springer-Verlag 1995Google Scholar
  10. 10.
    Pardoux, E.: Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. In: Cours à l'Ecole d'Eté de Probabilités de Saint-Flour XIX (Lect. Notes Math., vol. 1464) Berlin: Springer 1991Google Scholar
  11. 11.
    Protter, P., Talay, D.: The Euler scheme for Lévy driven stochastic differential equations (submitted)Google Scholar
  12. 12.
    Talay, D.: Efficient numerical schemes for the approximation of expectations of functionals of S.D.E. In: Szpirglas, J., Korezlioglu, H., Mazziotto, G.: Filtering and control of ramdom processes (Lect. Notes Control and Information Sciences, vol. 61, Proc. ENST-CNET Coll., Paris, 1983) Berlin: Springer 1984Google Scholar
  13. 13.
    Talay, D.: Discrétisation d'une E.D.S. et calcul approché d'espérances de fonctionnelles de la solution. Math. Modelling Numer. Anal.20, 141–179 (1986)Google Scholar
  14. 14.
    Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl.8, 94–120 (1990)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • V. Bally
    • 1
  • D. Talay
    • 2
  1. 1.Université du Maine and Laboratoire de ProbabilitésUniversité Paris 6Paris Cédex 05France
  2. 2.INRIAValbonne CedexFrance

Personalised recommendations