Zeitschrift für Physik B Condensed Matter

, Volume 65, Issue 4, pp 409–413 | Cite as

Multiple light scattering from disordered media. The effect of brownian motion of scatterers

  • G. Maret
  • P. E. Wolf
Article

Abstract

We have measured the time autocorrelation function of the light intensity multiply scattered from turbid aqueous suspensions of submicron size polystyrene spheres in directions near backscattering. It is found strongly non-exponential at short times revealing the very fast decay of coherence in extended scattering loops due to the thermal motion of the many spheres involved; the longest living decay time is found remarkably close to the single particle backscattering relaxation time even under conditions of interparticle interactions. These features are only weakly affected by the particular interference effect between time-reversed pairs of loops giving rise to the coherent backscattering enhancement. A simple argument is presented which accounts for these observations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuga, Y., Ishimaru, A.: J. Opt. Soc. Am. A8, 831 (1984)Google Scholar
  2. 2.
    Van Albada, M.P., Lagendijk, A.: Phys. Rev. Lett.55, 2692, (1985)Google Scholar
  3. 3.
    Wolf, P.E., Maret, G.: Phys. Rev. Lett.55, 2696 (1985)Google Scholar
  4. 4a.
    Kmelnitskii, D.E.: Physica126B+C, 235 (1984)Google Scholar
  5. 4b.
    Bergmann, G.: Phys. Rev. B28, 2914 (1983)Google Scholar
  6. 5.
    Akkermans, E., Maynard, R.: J. Phys. (Paris) Lett.46, L1045 (1985)Google Scholar
  7. 6.
    Akkermans, E., Wolf, P.E., Maynard, R.: Phys. Rev. Lett.56, 1471 (1986)Google Scholar
  8. 7.
    Berne, B.J., Pecora, R.: Dynamic light scattering. New York: John Wiley 1976Google Scholar
  9. 8.
    The relative difference ofq 2 between Θ=165° and Θ=180° is less than 2%Google Scholar
  10. 9.
    Errors in each point were estimated using the procedure given by Jakeman, E., Pike, E.R., Swain, S.: J. Phys. A Gen. Phys.4, 517 (1971)Google Scholar
  11. 10.
    The comparison between the normalized curves (b) and (c) is significant because the scattered intensity is nearly fully depolarizedGoogle Scholar
  12. 11.
    See e.g. Ishimaru, A.: Wave propagation and scattering in random media. Vol. 1. New York: Academic Press, 1978Google Scholar
  13. 12.
    Pusey, P.N.: J. Phys. A: Math. Gen.8, 1433 (1975)Google Scholar
  14. 13.
    Ackerson, B.J.: J. Phys. Chem.69, 684 (1978)Google Scholar
  15. 14.
    See e.g. Hess, W., Klein, R.: Adv. Phys.32, 173 (1983)Google Scholar
  16. 15.
    We did not systematically use these dialysed samples since they tend to precipitate after some timeGoogle Scholar
  17. 16.
    Wertheim, M.S.: Phys. Rev. Lett.10, 321 (1965)Google Scholar
  18. 17.
    Felderhoff, B.: J. Phys. A11, 929 (1978)Google Scholar
  19. 18.
    Hanna, S., Hess, W., Klein, R.: Physica111 A, 181 (1982)Google Scholar
  20. 19.
    At small φ values the correlation function had to be corrected for the contribution of the beamsplitter (Ref. 3) which was measured separatelyGoogle Scholar
  21. 20.
    See Ref. 6: the expression given here is slightly different from Eq. (6) of Ref. 6 and corresponds to a random walk starting at a distancel = from the interface and terminating at the interface. This seems appropriate to the case considered here wherel =≈20 μm≫l≈3 μmGoogle Scholar
  22. 21.
    Altschuler, B.L., Khmelnitskii, D.E.: Pis'ma Zh. Eksp. Teor. Fiz.42, 291 (1985) (JETP Lett.42, 359 (1985))Google Scholar
  23. 22.
    Without analyser, the detected intensity variance is about two times smaller than in the VV or VH configurations, showing that the two polarizations are nearly uncorrelatedGoogle Scholar
  24. 23.
    Kaveh, H., Rosenbluh, M., Edrei, I., Freund, I.: Phys. Rev. Lett.57, 2049 (1986)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. Maret
    • 1
  • P. E. Wolf
    • 2
  1. 1.Hochfeld-Magnetlabor des Max-Planck-Institut für FestkörperforschungGrenoble CedexFrance
  2. 2.Centre de Recherches sur lesTrès Basses Températures-CNRSGrenoble CedexFrance

Personalised recommendations