manuscripta mathematica

, Volume 29, Issue 2–4, pp 207–228

Liouville theorems for nonlinear elliptic equations and systems

  • Michael Meier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    FREHSE, J., Essential selfadjointness of singular elliptic operators. Preprint no. 116 of the SFB 72, Universität Bonn (1977)Google Scholar
  2. [2]
    HILDEBRANDT, S. and WIDMAN, K.-O., Some regularity results for quasilinear elliptic systems of second order. Math. z., 142, 67–86 (1975)Google Scholar
  3. [3]
    HILDEBRANDT, S. and WIDMAN, K.-O., On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order. Annali Scuola Norm. Sup. Pisa, IV, 1, 145–178 (1977)Google Scholar
  4. [4]
    HILDEBRANDT, S. and WIDMAN, K.-O., Sätze vom Liouvilleschen Typ für quasilineare elliptische Gleichungen und Systeme. Nachrichten der Akad. Wiss. Göttingen, to appearGoogle Scholar
  5. [5]
    IVANOV, A.V., Local estimates for the first derivatives of solutions of quasilinear second order elliptic equations and their application to Liouville type theorems. Seminar Steklov Inst. Leningrad, 30, 40–50 (1972). Translation in: J. Sov. Math., 4, 335–344 (1975)Google Scholar
  6. [6]
    MEIER, M., Reguläre und singuläre Lösungen quasilinearer elliptischer Gleichungen und Systeme. Dissertation, Bonn 1978Google Scholar
  7. [7]
    MORREY, C.B., Jr., Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin-Heidelberg-New York (1966)Google Scholar
  8. [8]
    PELETIER, L.A. and SERRIN, J., Gradient bounds and Liouville theorems for quasilinear elliptic equations. Annali Scuola Norm. Sup. Pisa, IV, 5, 65–104 (1978)Google Scholar
  9. [9]
    SERRIN, J., Local behavior of solutions of quasilinear equations. Acta Math., 111, 247–302 (1964)Google Scholar
  10. [10]
    SERRIN, J., Liouville theorems and gradient bounds for quasilinear elliptic systems. Archive Rat. Mech. Anal., 66, 295–310 (1977)Google Scholar
  11. [11]
    TRUDINGER, N.S., On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math., 20, 721–747 (1967)Google Scholar
  12. [12]
    WIEGNER, M., Über die Regularität schwacher Lösungen gewisser elliptischer Systeme. Manuscripta Math., vol. 15, 365–384 (1975)Google Scholar
  13. [13]
    WIEGNER, M., Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme. Math. z., 147, 21–28 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Michael Meier
    • 1
  1. 1.Mathematisches InstituteUniversität BonnBonn

Personalised recommendations