manuscripta mathematica

, Volume 30, Issue 3, pp 215–221 | Cite as

Polynomial growth and ideals in group algebras

  • Jean Ludwig


Let G be a locally compact group with polynomial growth and symmetric group algebra L1 (G). To every closed subset C of Prim* (L1(G)), there exists a smallest twosided closed ideal j (C) in L1(G), whose hull is equal to C. If H is a closed normal subgroup of G, then H1 is a set of synthesis in Prim* (L1(G)).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Boidol, H. Leptin, J. Schürmann und D. Vahle: Räume primitiver Ideale von Gruppenalgebren. Math. Ann.236, 1–13 (1978)Google Scholar
  2. 2.
    F.F. Bonsall, J. Duncan: Complete Normed Algebras, Ergebnisse der Mathematik80, Springer-Verlag (1973)Google Scholar
  3. 3.
    J. Dixmier: Opérateurs de rang fini dans les représentations unitaires. Institut des hautes études scient., Publ. math. No 6Google Scholar
  4. 4.
    J. W. Jenkins: Growth of connected locally compact groups J. of Funct. Analysis12, 113–127 (1973)Google Scholar
  5. 5.
    H. Leptin, D. Paguntke: Symmetry and non symmetry for locally compact group To appear in J. of. Funct. AnalysisGoogle Scholar
  6. 6.
    J. Ludwig: A class of symmetric and a class of Wiener group algebras. To appear in J. of. Funct. AnalysisGoogle Scholar
  7. 7.
    H. Reiter: Classical Harmonic Analysis and Locally compact Groups, Oxford: Clarendon Press 1968Google Scholar
  8. 8.
    H. Reiter: L1-Algebras und Segal Algebras. Lecture Notes in Mathematics Vol231 Springer (1971)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Jean Ludwig
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1

Personalised recommendations