, Volume 13, Issue 2, pp 167–180

On the fractional matching polytope of a hypergraph

  • Z. Füredi
  • J. Kahn
  • P. D. Seymour


For a hypergraph ℋ andb:ℋ→ℝ+ define
Conjecture. There is a matching ℳ of ℋ such that

For uniform ℋ andb constant this is the main theorem of [4]. Here we prove the conjecture if ℋ is uniform or intersecting, orb is constant.

AMS Subject Classification Code (1991)

05 D 15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Berge: Packing problems and hypergraph theory: a survey,Ann. Discrete Math. 4 (1979), 3–37.Google Scholar
  2. [2]
    B. Bollobás:Extremal Graph Theory, Academic Press, New York/London, 1978.Google Scholar
  3. [3]
    V. Faber andL. Lovász: Problem 18 in: Hypergraph Seminar (Ohio State Univ., 1972),Lecture Notes in Mathematics 411 p. 284. C. Berge and D. K. Ray-Chaudhuri, Eds., Springer-Verlag, Berlin/New York, 1974.Google Scholar
  4. [4]
    Z. Füredi: Maximum degree and fractional matchings in uniform hypergraphs,Combinatorica 1 (1981), 155–162.Google Scholar
  5. [5]
    Z. Füredi: Matchings and covers in hypergraphs,Graphs and Combinatorics 4 (1988), 115–206.Google Scholar
  6. [6]
    L. Lovász:Combinatorial Problems and Exercises, Pakadémiai Kiadó, Budapest North-Holland, Amsterdam, 1979.Google Scholar
  7. [7]
    L. Lovász: Graph theory and integer programming,Ann. Discrete Math 4 (1979), 141–158.Google Scholar
  8. [8]
    C. Shannon: A theorem on coloring the lines of a network,J. Math. Physics 28 (1949), 148–151.Google Scholar

Copyright information

© Akadémiai Kiadò 1993

Authors and Affiliations

  • Z. Füredi
    • 1
    • 2
  • J. Kahn
    • 4
  • P. D. Seymour
    • 3
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaU.S.A.
  2. 2.Mathematical Institute of theHungarian Academy of SciencesBudapest 1364Hungary
  3. 3.MorristownU.S.A.
  4. 4.Department of MathematicsRutgers UniversityNew BrunswickU.S.A.

Personalised recommendations