Monatshefte für Mathematik

, Volume 87, Issue 3, pp 181–207 | Cite as

Banach convolution algebras of functions II

  • Hans G. Feichtinger


LetG be a noncompact, locally compact group. By means of “generalized dyadic decompositions” ofG, translation invariant Banach spacesF(B, B, X) of (classes of) measurable functions onG are constructed, e. g. certain weighted amalgams ofLp-spaces. Basic properties of these spaces are derived and connections with spaces considered in the literature are indicated. As a main result, sufficient conditions are given which imply that a space of this type is a Banach algebra with respect to convolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bennett, C., andJ. E. Gilbert: Homogeneous algebras on the circle: II. — Multipliers, Ditkin conditions. Ann. Inst. Fourier22, 21–50 (1972).Google Scholar
  2. [2]
    Bergh, J., andJ. Löfström: Interpolation Spaces. Berlin-Heidelberg-New York: Springer. 1976.Google Scholar
  3. [3]
    Beurling, A.: Construction and analysis of some convolution algebras. Ann. Inst. Fourier14, 85–126 (1964).Google Scholar
  4. [4]
    Brandenburg, L. H.: On identifying the maximal ideals in Banach algebras. J. Math. Anal. Appl.50, 489–510 (1975).Google Scholar
  5. [5]
    Bund, I. M.: Birnbaum-Orlicz spaces of functions on groups. Pac. J. Math.58, 351–359 (1975).Google Scholar
  6. [6]
    Calderon, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math.24, 113–190 (1964).Google Scholar
  7. [7]
    Domar, Y.: Harmonic analysis based on certain commutative Banach algebras. Acta Math.96, 1–86 (1956).Google Scholar
  8. [8]
    Feichtinger, H. G.: Teilalgebren vonL 1 (G). Dissertation. Wien 1974.Google Scholar
  9. [9]
    Feichtinger, H. G.: On a class of convolution algebras of functions. Ann. Inst. Fourier27, 135–162 (1977).Google Scholar
  10. [10]
    Feichtinger, H. G.: WeightedLp-spaces and the canonical mappingT H:L 1 (G)L 1 (G/H). Boll. Un. Math. Ital. (1979).Google Scholar
  11. [11]
    Feichtinger, H. G.: On a converse to Cohen's factorization theorem for commutative Banach convolution algebras. Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 30/1977.Google Scholar
  12. [12]
    Feichtinger, H. G. Compact multipliers between weightedLp-spaces. (In preparation.)Google Scholar
  13. [13]
    Flett, T. M.: Some elementary inequalities for integrals with applications to Fourier transforms. Proc. Lond. Math. Soc.29, 557–576 (1974).Google Scholar
  14. [14]
    Gilbert, J. E.: Interpolation between weightedL p-spaces. Arkiv Mat.10, 235–249 (1972).Google Scholar
  15. [15]
    Herz, C. S.: Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier Transforms. J. Math. Mech.18, 283–324 (1968).Google Scholar
  16. [16]
    Holland, F.: Harmonic analysis on amalgams ofL p andl p. J. Lond. Math. Soc. (2).10, 295–305 (1975).Google Scholar
  17. [17]
    Johnson, R.: Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs. Proc. Lond. Math. Soc.29, 127–141 (1974).Google Scholar
  18. [18]
    Krogstad, H.: Multipliers of Segal algebras. Math. Scand.38, 285–303 (1976).Google Scholar
  19. [19]
    Larsen, R.: The algebras of functions with Fourier transforms inL p, a survey. Nieuw Arch. Wisk.22, 195–246 (1974).Google Scholar
  20. [20]
    Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. Oxford: University Press. 1968.Google Scholar
  21. [21]
    Reiter, H.:L 1-Algebras and Segal Algebras. Lecture Notes Math. 231. Berlin-Heidelberg-New York: Springer, 1971.Google Scholar
  22. [22]
    Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton: University Press. 1971.Google Scholar
  23. [23]
    Triebel, H.: I) Fourier Analysis and Function Spaces; II) Spaces of Besov-Hardy-Sobolev Type. Leipzig: Teubner 1977 resp. 1978.Google Scholar
  24. [24]
    Triebel, H.: Spaces of Kudrjavcev Type. I, II, J. Math. Anal. Appl.56, 253–277 and 278–287 (1976).Google Scholar
  25. [25]
    Wermer, J.: On a class of normed rings. Ark. f. Mat.2, 537–551 (1951).Google Scholar
  26. [26]
    Zaanen, A. C.: Integration. Amsterdam: North Holland Publ. Co. 1967.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hans G. Feichtinger
    • 1
  1. 1.Institut für Mathematik der Universität WienWienAustria

Personalised recommendations