Mathematical systems theory

, Volume 28, Issue 3, pp 199–213 | Cite as

Pumping lemmas for the control language hierarchy

  • M. A. Palis
  • S. M. Shende
Article

Abstract

We investigate a progression of grammatically defined language families, thecontrol language hierarchy. This hierarchy has been studied recently from the perspective of providing a linguistic framework for natural language syntax. We exhibit a progression of pumping lemmas, one for each family in the hierarchy, thereby showing that the hierarchy is strictly separable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. V. Aho. Indexed grammars—an extension to context free grammars.J. Assoc. Comput. Mech., 15:647–671, 1968.Google Scholar
  2. [2]
    S. Ginsburg and E. H. Spanier, Control sets on grammars.Math. Systems Theory, 2:159–177, 1968.Google Scholar
  3. [3]
    M. A. Harrison.Introduction to Formal Language Theory. Addison-Wesley, Reading, MA, 1978.Google Scholar
  4. [4]
    G. T. Herman and G. Rozenberg.Developmental Systems and Languages. North-Holland, Amsterdam, 1975.Google Scholar
  5. [5]
    O. H. Ibarra. Simple matrix languages.Inform, and Control, 17:359–394, 1970.Google Scholar
  6. [6]
    A. K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars.J. Comput. System Sci., 10(1), 1975.Google Scholar
  7. [7]
    T. Kasai. An hierarchy between context-free and context-sensitive languages.J. Comput. System Sci., 4:492–508, 1970.Google Scholar
  8. [8]
    N. A. Khabbaz. A geometric hierarchy of languages.J. Comput. System Sci., 8:142–157, 1974.Google Scholar
  9. [9]
    M. A. Palis and S. Shende. Upper bounds on recognition of a hierarchy of non-context-free languages.Theoret. Comput. Sci., 98(2):289–319, May 1992.Google Scholar
  10. [10]
    D. J. Rozenkrantz. Programmed grammars and classes of formal languages.J. Assoc. Comput. Mech., 16:107–131, 1969.Google Scholar
  11. [11]
    A. Salomaa. Matrix grammars with a leftmost restriction.Inform, and Control, 20:143–149, 1970.Google Scholar
  12. [12]
    A. Salomaa.Formal Languages. Academic Press, New York, 1973.Google Scholar
  13. [13]
    J. W. Thatcher. Tree automata: an informal survey. In A. V. Aho, editor,Currents in the Theory of Computing, pp. 143–172. Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
  14. [14]
    K. Vijay-Shanker. A Study of Tree Adjoining Grammars. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, 1987.Google Scholar
  15. [15]
    K. Vijay-Shanker and D. J. Weir. The equivalence of four extensions of context-free grammars.Math. Systems Theory, 27:511–546, 1994.Google Scholar
  16. [16]
    D. J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, September 1988.Google Scholar
  17. [17]
    D. J. Weir. A geometric hierarchy beyond context-free languages.Theoret. Comput. Sci., 104:235–261, 1992.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • M. A. Palis
    • 1
  • S. M. Shende
    • 2
  1. 1.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Computer Science and EngineeringUniversity of NebraskaLincolnUSA

Personalised recommendations